题目:
模拟掷骰子。以下代码能够计算每种两个骰子之和的准确概率分布。
int SIDES = 6;
double[] dist = new double[2 * SIDES + 1];
for (int i = 1; i <= SIDES; i++)
for (int j = 1; j <= SIDES; j++)
dist[i + j] += 1.0;
for (int k = 2; k <= 2 * SIDES; k++)
dist[k] /= 36.0;
dist[i]的值就是两个骰子之和为i的概率。用实验模拟N次掷骰子,并在计算两个1到6之间的随机整数之和时几率每个值的出现频率以验证它们的概率。N要多大才能保证你的经验数据和准确数据的吻合程度达到小数点后三位?
代码:
public class Test {
public static void main(String[] args) {
int SIDES = 6;
double[] dist = new double[2 * SIDES + 1];
for (int i = 1; i <= SIDES; i++)
for (int j = 1; j <= SIDES; j++)
dist[i + j] += 1.0;
Scanner sc = new Scanner(System.in);
System.out.println("请输入掷骰子的次数:");
int number = sc.nextInt();
double[] result = new double[2 * SIDES + 1];
for (int i = 0; i < number; i += 2) {
int a = (int) (Math.random() * SIDES) + 1;
int b = (int) (Math.random() * SIDES) + 1;
result[a + b] += 1.0;
}
for (int k = 2; k <= 2 * SIDES; k++) {
result[k] /= (number / 2.0);
System.out.println("真实情况下骰子数为" + k + "的概率:" + result[k]);
System.out.println("--------------");
dist[k] /= 36.0;
System.out.println("理论情况下骰子数为" + k + "的概率:" + dist[k]);
System.out.println("--------------");
}
}
}
结果:
请输入掷骰子的次数:
1000000
真实情况下骰子数为2的概率:0.027696
--------------
理论情况下骰子数为2的概率:0.027777777777777776
--------------
真实情况下骰子数为3的概率:0.05654
--------------
理论情况下骰子数为3的概率:0.05555555555555555
--------------
真实情况下骰子数为4的概率:0.082986
--------------
理论情况下骰子数为4的概率:0.08333333333333333
--------------
真实情况下骰子数为5的概率:0.111082
--------------
理论情况下骰子数为5的概率:0.1111111111111111
--------------
真实情况下骰子数为6的概率:0.138782
--------------
理论情况下骰子数为6的概率:0.1388888888888889
--------------
真实情况下骰子数为7的概率:0.16671
--------------
理论情况下骰子数为7的概率:0.16666666666666666
--------------
真实情况下骰子数为8的概率:0.139772
--------------
理论情况下骰子数为8的概率:0.1388888888888889
--------------
真实情况下骰子数为9的概率:0.110654
--------------
理论情况下骰子数为9的概率:0.1111111111111111
--------------
真实情况下骰子数为10的概率:0.083222
--------------
理论情况下骰子数为10的概率:0.08333333333333333
--------------
真实情况下骰子数为11的概率:0.055144
--------------
理论情况下骰子数为11的概率:0.05555555555555555
--------------
真实情况下骰子数为12的概率:0.027412
--------------
理论情况下骰子数为12的概率:0.027777777777777776
--------------
解释:
我使用掷骰子1000000次去进行试验,不仅计算出了相关概率,还符合题目中所说的保证经验数据和准确数据的吻合程度达到小数点后三位的要求。