图解Java数据结构之稀疏数组

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_42453117/article/details/98592010

在编程中,算法的重要性不言而喻,没有算法的程序是没有灵魂的。可见算法的重要性。
然而,在学习算法之前我们需要掌握数据结构,数据结构是算法的基础。
我在大学的时候,学校里的数据结构是用C语言教的,因为对C语言也不是很了解,所以掌握得不是特别好,在网上找的一些学习资料里也基本都是用C语言来进行数据结构的教学。
那么,从本篇文章开始,我将用Java语言来介绍数据结构,当然,数据结构过后就是算法。

线性结构和非线性结构
  1. 线性结构
    线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系;
    线性结构有两种不同的存储结构,即顺序存储结构和链式存储结构。顺序存储的线性表称为顺序表,顺序表中存储的元素是连续的;
    链式存储的线性表称为链表,链表中存储的元素不一定是连续的,元素节点中存放数据元素以及相邻元素的地址信息;
    线性结构常见的有:数组、队列、链表和栈
  2. 非线性结构
    非线性结构包括:二维数组、多维数组、广义表、树结构、图结构
稀疏数组

对数据结构有了一个初步的认识之后,我们开始对一些具体的数据结构进行详细的分析。
我们来看一个实际的需求:
这是一个五子棋的程序,有存盘退出和续上盘的功能,如下图,如何将下图的棋局进行保存呢?
在这里插入图片描述
那这个问题很简单,很多人可能会想到用二维数组来进行存储。
在这里插入图片描述
如上图,我们用0表示无子,1表示黑子,2表示蓝子,但是这个程序问题很大,因为该二维数组的很多值都是默认值0,因此记录了很多没有意义的数据,那么这个时候我们就可以使用稀疏数组来对该二维数组进行一个压缩。
那么稀疏数组到底是什么呢?
当一个数组中大部分元素是0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组。
稀疏数组的处理方法是:

  1. 记录数组一共有几行几列,有多少个不同的值
  2. 把具有不同值的元素的行列以及值记录在一个小规模的数组中,从而缩小程序的规模

那么了解了稀疏数组的概念后,我们通过稀疏数组来改进一下五子棋程序。
在这里插入图片描述
经过稀疏数组的压缩之后,原数组从原来的11行11列变为了三行三列。
该稀疏数组的第一行记录的是原数组的行数和列数以及元素个数。
接下来的每一行记录的是有效元素的位置和值,例如第二行记录的是原数组中位于1,2位置上的元素1;第三行记录的是原数组中位于2,3位置上的元素2。
综上所述,二维数组转稀疏数组的思路:

  1. 遍历原始的二维数组,得到要保存的有效元素个数
  2. 根据有效元素个数创建稀疏数组sparseArr
  3. 将二维数组的有效数据存入稀疏数组即可

稀疏数组转原始二维数组的思路:

  1. 先读取稀疏数组的第一行,根据第一行的数据创建原始二维数组
  2. 读取稀疏数组后几行的数据,并赋给原始的二维数组即可

关于实现思路已经分析完毕,接下来用代码实现。
将二维数组转稀疏数组用代码实现如下:

public static void main(String[] args) {
		// 创建一个原始的二维数组(11行11列)
		// 0:表示没有棋子
		// 1:表示黑子
		// 2:表示蓝子
		int chessArr1[][] = new int[11][11];
		chessArr1[1][2] = 1;
		chessArr1[2][3] = 2;

		System.out.println("原始的二维数组:");

		for (int[] row : chessArr1) {
			for (Integer value : row) {
				System.out.printf("%d\t", value);
			}
			System.out.println();
		}

		// 将二维数组转稀疏数组
		// 先遍历二维数组,得到非0的元素个数
		int sum = 0;
		for (int i = 0; i < chessArr1.length; i++) {
			for (int j = 0; j < chessArr1[i].length; j++) {
				if (chessArr1[i][j] != 0) {
					sum++;
				}
			}
		}

		// 创建对应的稀疏数组
		int sparseArr[][] = new int[sum + 1][3];
		// 给稀疏数组赋值
		// 稀疏数组第一行存的是原始数组的行数、列数和有效元素个数
		sparseArr[0][0] = chessArr1.length;
		sparseArr[0][1] = chessArr1[0].length;
		sparseArr[0][2] = sum;

		// 遍历二维数组,将非0的值存入到稀疏数组中
		int count = 0; // 用于记录是第几个非0数据
		for (int i = 0; i < chessArr1.length; i++) {
			for (int j = 0; j < chessArr1[i].length; j++) {
				if (chessArr1[i][j] != 0) {
					count++;
					sparseArr[count][0] = i; // 存放元素位置
					sparseArr[count][1] = j; // 存放元素位置
					sparseArr[count][2] = chessArr1[i][j];// 存放元素值
				}
			}
		}
		
		//遍历稀疏数组
		System.out.println();
		System.out.println("稀疏数组:");
		for (int[] row : sparseArr) {
			for (Integer value : row) {
				System.out.printf("%d\t", value);
			}
			System.out.println();
		}
	}

运行结果如下:

原始的二维数组:
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	
0	0	0	2	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	

稀疏数组:
11	11	2	
1	2	1	
2	3	2	

这样,我们就成功地将二维数组转为了稀疏数组。

那么用代码如何将稀疏数组转为二维数组呢?

		// 将稀疏数组转为二维数组
		// 先读取稀疏数组的第一行,根据第一行的数据创建原始数组
		int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];

		// 读取稀疏数组后几行数据(从第二行开始读取),并赋给原始数组
		for (int i = 1; i < sparseArr.length; i++) {
			// 第一列和第二列组成元素位置,第三列为元素值
			chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
		}

		// 遍历恢复后的二维数组
		System.out.println();
		System.out.println("恢复后的二维数组:");
		for (int[] row : chessArr2) {
			for (Integer value : row) {
				System.out.printf("%d\t", value);
			}
			System.out.println();
		}

思路缕清除之后,代码非常简单,看运行效果:

原始的二维数组:
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	
0	0	0	2	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	

稀疏数组:
11	11	2	
1	2	1	
2	3	2	

恢复后的二维数组:
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	
0	0	0	2	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	

整体代码如下:

public static void main(String[] args) {
		// 创建一个原始的二维数组(11行11列)
		// 0:表示没有棋子
		// 1:表示黑子
		// 2:表示蓝子
		int chessArr1[][] = new int[11][11];
		chessArr1[1][2] = 1;
		chessArr1[2][3] = 2;

		System.out.println("原始的二维数组:");

		for (int[] row : chessArr1) {
			for (Integer value : row) {
				System.out.printf("%d\t", value);
			}
			System.out.println();
		}

		// 将二维数组转稀疏数组
		// 先遍历二维数组,得到非0的元素个数
		int sum = 0;
		for (int i = 0; i < chessArr1.length; i++) {
			for (int j = 0; j < chessArr1[i].length; j++) {
				if (chessArr1[i][j] != 0) {
					sum++;
				}
			}
		}

		// 创建对应的稀疏数组
		int sparseArr[][] = new int[sum + 1][3];
		// 给稀疏数组赋值
		// 稀疏数组第一行存的是原始数组的行数、列数和有效元素个数
		sparseArr[0][0] = chessArr1.length;
		sparseArr[0][1] = chessArr1[0].length;
		sparseArr[0][2] = sum;

		// 遍历二维数组,将非0的值存入到稀疏数组中
		int count = 0; // 用于记录是第几个非0数据
		for (int i = 0; i < chessArr1.length; i++) {
			for (int j = 0; j < chessArr1[i].length; j++) {
				if (chessArr1[i][j] != 0) {
					count++;
					sparseArr[count][0] = i; // 存放元素位置
					sparseArr[count][1] = j; // 存放元素位置
					sparseArr[count][2] = chessArr1[i][j];// 存放元素值
				}
			}
		}

		// 遍历稀疏数组
		System.out.println();
		System.out.println("稀疏数组:");
		for (int[] row : sparseArr) {
			for (Integer value : row) {
				System.out.printf("%d\t", value);
			}
			System.out.println();
		}

		// 将稀疏数组转为二维数组
		// 先读取稀疏数组的第一行,根据第一行的数据创建原始数组
		int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];

		// 读取稀疏数组后几行数据(从第二行开始读取),并赋给原始数组
		for (int i = 1; i < sparseArr.length; i++) {
			// 第一列和第二列组成元素位置,第三列为元素值
			chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
		}

		// 遍历恢复后的二维数组
		System.out.println();
		System.out.println("恢复后的二维数组:");
		for (int[] row : chessArr2) {
			for (Integer value : row) {
				System.out.printf("%d\t", value);
			}
			System.out.println();
		}
	}

推荐阅读

1.图解Java数据结构之队列

2.图解Java数据结构之单链表

3.图解Java数据结构之双向链表

4.图解Java数据结构之环形链表

展开阅读全文

图解Java数据结构和算法

06-21

<span style="color:#404040;">1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。</span><br /><br /><span style="color:#404040;">2.网上数据结构和算法的课程不少,但存在两个问题:</span><br /><br /><span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了</span><br /><span style="color:#404040;">2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 </span><br /><span style="color:#404040;">3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 </span><br /><span style="color:#404040;">4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴</span><br /><br /><span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。</span><br /><br /><span style="color:#404040;">教程内容:</span><br /><span style="color:#404040;">本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span><br /><br /><span style="color:#404040;">学习目标:</span><br /><span style="color:#404040;">通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。</span>

稀疏数组的应用场景

06-21

<span style="color:#404040;">1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。</span><br /><br /><span style="color:#404040;">2.网上数据结构和算法的课程不少,但存在两个问题:</span><br /><br /><span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了</span><br /><span style="color:#404040;">2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 </span><br /><span style="color:#404040;">3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 </span><br /><span style="color:#404040;">4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴</span><br /><br /><span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。</span><br /><br /><span style="color:#404040;">教程内容:</span><br /><span style="color:#404040;">本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span><br /><br /><span style="color:#404040;">学习目标:</span><br /><span style="color:#404040;">通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。</span>

没有更多推荐了,返回首页