动态规划问题
动规五部曲:
1.确定dp数组以及下标的含义
2.确定递推公式
3.dp数组如何初始化
4.确定遍历顺序
5.打印dp数组
题目1:509. 斐波那契数
思路:
动规五部曲:
1.确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
2.确定递推公式
dp[i] = dp[i - 1] + dp[i - 2];
3.dp数组如何初始化
题目中把如何初始化也直接给我们了,dp[0] = 0;dp[1] = 1;
4.确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5.打印dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55
class Solution {
public int fib(int n) {
if (n <= 1) return n;
int[] dp = new int[n+1];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
题目2:70. 爬楼梯
思路:
动规五部曲:
1.确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
2.确定递推公式
dp[i] = dp[i - 1] + dp[i - 2];
3.dp数组如何初始化
dp[1] = 1,dp[2] = 2;
4.确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5.打印dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为5的时候,dp数组应该是如下的数列:1 2 3 5 8
class Solution {
public int climbStairs(int n) {
if(n<=2) return n;
int [] dp=new int[n+1];
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
}
题目3:746. 使用最小花费爬楼梯
思路:
动规五部曲:
1.确定dp数组以及下标的含义
dp[i]:到达第i台阶所花费的最少体力为dp[i]
2.确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
3.dp数组如何初始化
题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 所以初始化 dp[0] = 0,dp[1] = 0;
4.确定遍历顺序
从递归公式中可以看出,dp[i]是依赖 dp[i - 1] 或 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5.打印dp数组
class Solution {
public int minCostClimbingStairs(int[] cost) {
int len = cost.length;
int[] dp = new int[len + 1];
// 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
dp[0] = 0;
dp[1] = 0;
// 计算到达每一层台阶的最小费用
for (int i = 2; i <= len; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[len];
}
}
题目4:62. 不同路径
思路:
动规五部曲:
1.确定dp数组以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径;
2.确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。那么dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来,有相加这么多种的路径;
3.dp数组如何初始化
首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理;
4.确定遍历顺序
递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的;
5.打印dp数组
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
//初始化
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
题目5:63. 不同路径 II
思路:
动规五部曲:
1.确定dp数组以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径;
2.确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。那么dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来,有相加这么多种的路径;但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0);
3.dp数组如何初始化
首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理;但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。
4.确定遍历顺序
递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的;
5.打印dp数组
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
//行
int m = obstacleGrid.length;
//列
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if(obstacleGrid[i][j]==1) continue;
dp[i][j] =dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
题目6:343. 整数拆分
思路:
动规五部曲:
1.确定dp数组以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i];
2.确定递推公式
其实可以从1遍历j,然后有两种渠道得到dp[i],一个是j * (i - j) 直接相乘。一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义;递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});
3.dp数组如何初始化
这里只初始化dp[2] = 1;
4.确定遍历顺序
确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)),dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i];
5.打印dp数组
class Solution {
public int integerBreak(int n) {
//dp[i] 为正整数 i 拆分后的结果的最大乘积
int[] dp = new int[n+1];
//初始化
dp[2] = 1;
//遍历顺序
for(int i = 3; i <= n; i++) {
for(int j = 1; j <= i-j; j++) {
// 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
//并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
//j 最大到 i-j,就不会用到 dp[0]与dp[1]
dp[i] = Math.max(dp[i], Math.max(j*(i-j), j*dp[i-j]));
// j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
//而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
}
}
return dp[n];
}
}
题目7:96. 不同的二叉搜索树
思路:好难
动规五部曲:
1.确定dp数组以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。
2.确定递推公式
dp[3]=头结点1 + 头结点2 + 头结点3
头结点1 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
头结点2 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
头结点3 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2];
所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量
3.dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0],从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。所以初始化dp[0] = 1
4.确定遍历顺序
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
那么遍历i里面每一个数作为头结点的状态,用j来遍历。
5.打印dp数组
class Solution {
public int numTrees(int n) {
//初始化 dp 数组
int[] dp = new int[n + 1];
//初始化0个节点和1个节点的情况
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
//对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
//一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
}
二维dp数组01背包问题
动规五部曲:
1.确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少;
2.确定递推公式
那么可以有两个方向推出来dp[i][j],
1)不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
2)放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3.dp数组如何初始化
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
4.确定遍历顺序
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),先遍历物品或者先遍历背包这两种都可以,因为无论先遍历哪个,左上角方向和正上方都有值可以推出最终值;
5.打印dp数组
import java.util.Arrays;
public class BagProblem {
public static void main(String[] args) {
int[] weight = {1,3,4};
int[] value = {15,20,30};
int bagSize = 4;
testWeightBagProblem(weight,value,bagSize);
}
/**
* 初始化 dp 数组做了简化(给物品增加冗余维)。这样初始化dp数组,默认全为0即可。
* dp[i][j] 表示从下标为[0 - i-1]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
* 其实是模仿背包重量从 0 开始,背包容量 j 为 0 的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为 0。
* 可选物品也可以从无开始,也就是没有物品可选,即dp[0][j],这样无论背包容量为多少,背包价值总和一定为 0。
* @param weight 物品的重量
* @param value 物品的价值
* @param bagSize 背包的容量
*/
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
// 创建dp数组
int goods = weight.length; // 获取物品的数量
int[][] dp = new int[goods + 1][bagSize + 1]; // 给物品增加冗余维,i = 0 表示没有物品可选
// 初始化dp数组,默认全为0即可
// 填充dp数组
for (int i = 1; i <= goods; i++) {
for (int j = 1; j <= bagSize; j++) {
if (j < weight[i - 1]) { // i - 1 对应物品 i
/**
* 当前背包的容量都没有当前物品i大的时候,是不放物品i的
* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
*/
dp[i][j] = dp[i - 1][j];
} else {
/**
* 当前背包的容量可以放下物品i
* 那么此时分两种情况:
* 1、不放物品i
* 2、放物品i
* 比较这两种情况下,哪种背包中物品的最大价值最大
*/
dp[i][j] = Math.max(dp[i - 1][j] , dp[i - 1][j - weight[i - 1]] + value[i - 1]); // i - 1 对应物品 i
}
}
}
// 打印dp数组
for(int[] arr : dp){
System.out.println(Arrays.toString(arr));
}
}
}
一维dp数组01背包问题
动规五部曲:
1.确定dp数组以及下标的含义
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
2.确定递推公式
那么可以有两个方向推出来dp[j],
1)不放物品i:dp[j]
2)放物品i:dp[j - weight[i]] + value[i]
所以递归公式: dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
3.dp数组如何初始化
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0
4.确定遍历顺序
和二维dp的写法中,遍历背包的顺序是不一样的,二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小,倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次;
举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15
如果正序遍历
dp[1] = dp[1 - weight[0]] + value[0] = 15
dp[2] = dp[2 - weight[0]] + value[0] = 30
此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历
为什么倒序遍历,就可以保证物品只放入一次呢?
倒序就是先算dp[2]
dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)
dp[1] = dp[1 - weight[0]] + value[0] = 15
所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。
5.打印dp数组
public static void main(String[] args) {
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWight = 4;
testWeightBagProblem(weight, value, bagWight);
}
public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
int wLen = weight.length;
//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
int[] dp = new int[bagWeight + 1];
//遍历顺序:先遍历物品,再遍历背包容量
for (int i = 0; i < wLen; i++){
for (int j = bagWeight; j >= weight[i]; j--){
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
//打印dp数组
for (int j = 0; j <= bagWeight; j++){
System.out.print(dp[j] + " ");
}
}
题目8:416. 分割等和子集
思路:套用01背包,来解决这个问题
动规五部曲:
1.确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j],本题中每一个元素的数值既是重量,也是价值。套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j],当 dp[target] == target 的时候,背包就装满了;
2.确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
3.dp数组如何初始化
在01背包,一维dp如何初始化,已经讲过,从dp[j]的定义来看,首先dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了;
4.确定遍历顺序
如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
5.打印dp数组
class Solution {
public boolean canPartition(int[] nums) {
int n = nums.length;
int sum = 0;
for(int num : nums) {
sum += num;
}
//总和为奇数,不能平分
if(sum % 2 != 0) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
for(int i = 0; i < n; i++) {
for(int j = target; j >= nums[i]; j--) {
//物品 i 的重量是 nums[i],其价值也是 nums[i]
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
return dp[target] == target;
}
}
题目9:1049. 最后一块石头的重量 II
思路:本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。
动规五部曲:
1.确定dp数组以及下标的含义
dp[j]表示重量为j的背包,最多可以背最大重量为dp[j],本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”
2.确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
3.dp数组如何初始化
因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖
4.确定遍历顺序
果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!最后dp[target]里是容量为target的背包所能背的最大重量。那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。
5.打印dp数组
1)一维数组
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for (int i : stones) {
sum += i;
}
int target = sum/2;
//初始化dp数组
int[] dp = new int[target + 1];
for (int i = 0; i < stones.length; i++) {
//采用倒序
for (int j = target; j >= stones[i]; j--) {
//两种情况,要么放,要么不放
dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - 2 * dp[target];
}
}
2)二维数组
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for (int s : stones) {
sum += s;
}
int target = sum / 2;
//初始化,dp[i][j]为可以放0-i物品,背包容量为j的情况下背包中的最大价值
int[][] dp = new int[stones.length][target + 1];
//dp[i][0]默认初始化为0
//dp[0][j]取决于stones[0]
for (int j = stones[0]; j <= target; j++) {
dp[0][j] = stones[0];
}
for (int i = 1; i < stones.length; i++) {
for (int j = 1; j <= target; j++) {//注意是等于
if (j >= stones[i]) {
//不放:dp[i - 1][j] 放:dp[i - 1][j - stones[i]] + stones[i]
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - stones[i]] + stones[i]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
System.out.println(dp[stones.length - 1][target]);
return (sum - dp[stones.length - 1][target]) - dp[stones.length - 1][target];
}
}
题目10:494. 目标和
思路:假设加法的总和为x,那么减法对应的总和就是sum - x。所以我们要求的是 x - (sum - x) = target,x = (target + sum) / 2,此时问题就转化为,装满容量为x的背包,有几种方法
题目11:474. 一和零
思路:
题目12:518. 零钱兑换 II
思路:
题目13:377. 组合总和 Ⅳ
思路:
题目14:70. 爬楼梯进阶版
思路:
题目15:322. 零钱兑换
思路:
题目16:279. 完全平方数
思路:
题目17:322. 零钱兑换
思路:
题目18:139. 单词拆分
思路:
题目19:198. 打家劫舍
思路:
题目20:213. 打家劫舍 II
思路:
题目21:337. 打家劫舍 III
思路:
题目22:121. 买卖股票的最佳时机
思路:
题目23:122. 买卖股票的最佳时机 II
思路:
题目24:123. 买卖股票的最佳时机 III
思路:
题目25:188. 买卖股票的最佳时机 IV
思路:
题目26:309. 买卖股票的最佳时机含冷冻期
思路:
题目27:714. 买卖股票的最佳时机含手续费
思路:
题目28:300. 最长递增子序列
思路:
题目29:674. 最长连续递增序列
思路:
题目30:718. 最长重复子数组
思路:
题目31:1143. 最长公共子序列
思路:
题目32:1035. 不相交的线
思路:
题目33:1143. 最长公共子序列
思路:
题目34:53. 最大子数组和
思路:
题目35:392. 判断子序列
思路:
题目36:115. 不同的子序列
思路:
题目37:583. 两个字符串的删除操作
思路:
题目38:72. 编辑距离
思路:
题目39:647. 回文子串
思路:
题目40:516. 最长回文子序列
思路: