1、sklearn.model_selection
.train_test_split
train_test_split函数用于将矩阵随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签。
格式:
X_train,X_test, y_train, y_test =cross_validation.train_test_split(train_data,train_target,test_size=0.3, random_state=0)
参数解释:
train_data:被划分的样本特征集
train_target:被划分的样本标签
test_size:如果是浮点数,在0-1之间,表示样本占比(0.5可以写成 .5);如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。
2、sklearn.utils
.shuffle¶ 以一致的方式随机播放阵列或稀疏矩阵
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])
>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) # 打乱数据
>>> X
array([[0., 0.],
[2., 1.],
[1., 0.]])