林学菜鸟---R语言点格局分析

林学菜鸟—R语言点格局分析
本人是R语言菜鸟一枚,有不足的地方希望大佬们指教。这段时间忙着写毕业论文,因为论文的一部分内容涉及到树种的分布格局,所以自己鼓捣了一段时间。下面是我用R语言(Rstudio)做的一些工作(下列表依次为:原始数据;输出结果(第一列:数值顺序编号;r:尺度;obs:观测值;theo:理论值;lo:下包络线;hi:上包络线):
原始数据

部分结果

### 帮助函数:搞清楚包、函数的作用及使用方法

help("Kest")


## step 1

### 安装spatstat包

install(spatstat)

### 加载spatstat包

require(spatstat)

### 建立工作环境
setwd("E:/cycl")

## step 2

### 数据读取

cycl<-read.csv("cycl.csv",header=T)
head(cycl)

### 该函数创建点模式数据集

cycl.ppp<-ppp(cycl$X,cycl$Y,window=owin(xrange=c(0,24.5),yrange=c(0,17.2)))

###Monte-Carlo检验(Envelope);K( r ) or G( r );nism(迭代次数)

cycl.envelope<-envelope(cycl.ppp,fun=Kest,nsim=199)
cycl.envelope<-envelope(cycl.ppp,fun=Gest,nsim=199)


### 将envelope()函数计算的结果输出到一个.csv文件里,可以根据输出结果自己作图;

write.csv(cycl.envelope, "cyclenvelope.csv",row=FALSE)

### “row=FALSE”表示删除数值顺序编号,即第一列1~513数值。
## step 3

### 树种空间分布图

plot(cycl.ppp)

 
### K分布格局
plot(cycl.envelope,xlab="尺度Scale (m)",ylab="K值K(r)",main="a",xlim=c(0,5))


### G分布格局
plot(cycl.envelope,xlab="尺度Scale (m)",ylab="G值G(r)",main="b",xlim=c(0,6))


### xalb:x轴标题;ylab:y轴标题;main:图标题;xlim(调整x轴范围,即尺度范围)

K分布格局
G分布格局

  • 8
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 23
    评论
### 回答1: 下面是一个简单的Python代码,可以用来实现随机森林算法:from sklearn.ensemble import RandomForestClassifier# 创建一个随机森林分类器 clf = RandomForestClassifier()# 训练模型 clf.fit(X_train, y_train)# 预测结果 y_pred = clf.predict(X_test) ### 回答2: 以下是一个使用Python编写的与林学相关的随机森林算法的代码示例: ```python import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 读取数据集 data = pd.read_csv('forest_data.csv') # 划分特征和目标变量 X = data.drop('target', axis=1) y = data['target'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建随机森林模型 rf_model = RandomForestClassifier(n_estimators=100, random_state=42) # 在训练集上训练模型 rf_model.fit(X_train, y_train) # 在测试集上进行预测 y_pred = rf_model.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print('准确率:', accuracy) ``` 要运行此代码,请确保已安装pandas、scikit-learn等必需的Python库,并将数据集文件"forest_data.csv"放置在当前工作目录中或指定正确的文件路径。此代码将数据集拆分为特征和目标变量,然后使用随机森林模型进行训练和预测,并计算准确率。 ### 回答3: 下面是一个使用Python编写的与林学相关的随机森林算法的简单示例代码。 ```python import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 读取森林数据集 data = pd.read_csv('forest_dataset.csv') # 数据预处理 X = data.drop('class', axis=1) y = data['class'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 在测试集上进行预测 y_pred = rf.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("准确率:", accuracy) ``` 代码的详细解释: 1. 导入所需的库:pandas用于数据处理,sklearn中的RandomForestClassifier用于构建随机森林模型, train_test_split用于划分训练集和测试集,accuracy_score用于计算准确率。 2. 读取森林数据集:使用pandas的read_csv函数读取存储森林相关特征和分类标签的CSV文件。 3. 数据预处理:将特征和标签分离,X为特征数据,y为分类标签。 4. 划分训练集和测试集:使用train_test_split函数将数据集划分为训练集和测试集,其中test_size表示测试集占比,random_state是随机数种子,保证运行结果的可复现性。 5. 构建随机森林模型:初始化RandomForestClassifier,并设置n_estimators参数为100表示建立100个决策树。 6. 在测试集上进行预测:调用predict函数对测试集进行预测,得到预测结果y_pred。 7. 计算准确率:使用accuracy_score函数计算预测准确率,并将结果打印输出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值