最小生成树、Prim算法、Kruskal算法

最小生成树

G = ( V , E ) G = (V,E) G=(V,E) 是一个无向连通图,生成树上各边的权值之和称为该生成树的代价,在G的所有生成树中,代价最小的生成树叫最小生成树

MST性质

最小生成树具有MST性质:假设 G = ( V , E ) G=(V,E) G=(V,E) 是一个无向连通网,U是顶点集合V的一个非空子集。若 ( u , v ) (u,v) (u,v)是一条具有最小权值的边,其中 u ∈ U , v ∈ V − U u \in U, v \in V-U uU,vVU,则必存在一棵包含边 ( u , v ) (u,v) (u,v) 的最小生成树。

就是说可以把图分为两个点集,两个点集之间的最小边一定在最小生成树里面。

Prim算法

Prim算法的基本思想是:设 G = ( V , E ) G=(V,E) G=(V,E) 是一个无向连通图,令 T = ( U , T E ) T = (U, TE) T=(U,TE) 是 G 的最小生成树。T的初始状态为 U = { v 0 } ( v 0 ∈ V ) , T E = { } U = \{v_0\}(v_0\in V),TE=\{\} U={v0}(v0V),TE={},然后重复执行下述操作:在所有 u ∈ U , v ∈ V − U u\in U, v \in V - U uU,vVU 的中找到一条代价最小的边 ( u , v ) (u,v) (u,v) 并入集合 TE ,同时 v 并入 U ,直至 U=V 为止。此时 TE 中必有 n-1 条边,则 T 就是一棵最小生成树。

也就是找一个点构成一棵最小生成子树,每次将与树相连的包含其他结点的一条最小边和那个结点加入生成树,直到所有结点都加入生成树。

代码实现:

// Prim最小生成树算法
/*
g:无向图的邻接矩阵
n:结点个数

return:返回最小生成树的邻接矩阵
*/
int** graph_minimalSpanningTree_Prim(int** g, int n)
{
    // 生成一个相同大小的图
    int** g_prim = graph_createArrInValue(n, -1);
    // 记录U集合的顶点
    int* U = utils_createArr(n, 0);
    int w = -1,w_i = -1, w_j = -1;

    U[0] = 1;

    for(int k = 0; k < n-1;k ++)
    {
        w = -1;

        // 确定可选范围并找到最小边
        for(int i = 0; i < n; i ++)
        {
            // 去掉不要的行
            if(U[i] == 0) continue;

            for(int j = 0; j < n; j ++)
            {
                // 去掉不要的列
                if(U[j] == 1) continue;

                // 去掉无效边
                if(g[i][j] == -1) continue;

                // 找到可选范围内的最小边,并记录
                if(w == -1 || (w != -1 && g[i][j] < w))
                {
                    w_i = i;
                    w_j = j;
                    w = g[i][j];
                }
            }
        }

        printf("(%d,%d),%d \n", w_i, w_j, w);

        /*
        因为不能确定到底加入了哪个结点,
        但w_i,w_j中总有一个是新加入的结点
        并且另一个是已经加入过的结点,所有两个都赋值1不会有问题
        */
        U[w_i] = 1;
        U[w_j] = 1;
        g_prim[w_i][w_j] = w;
    }

    return g_prim;
}

测试样例:

在这里插入图片描述

测试代码:

int main()
{
    int arr[27] = {0,1,34,0,5,19,0,2,46,1,4,12,5,4,26,5,2,25,5,3,25,2,3,17,3,4,38};
    int** g = graph_createArrInValue(6, -1);
    
    // 根据arr生成邻接矩阵
    graph_createAdjacencyMatrixByArrWithWeight(g,arr, 27, 0);

    printf("原图邻接矩阵:\n");
    // 打印邻接矩阵
    graph_print(g, 6, "%2d ");
    printf("\n");
    int** g_prim = graph_minimalSpanningTree_Prim(g, 6);

    printf("最小生成树邻接矩阵:\n");
    graph_print(g_prim, 6, "%2d ");
    return 0;
}

运行结果:

在这里插入图片描述

部分步骤图解:(红圈是选中行,红叉是删除列,篮圈是选中边)

  1. 选中 (0,5),19。此时 U = { v 0 } U=\{v_0\} U={v0}

    在这里插入图片描述

  2. 选中(5,2),25。此时 U = { v 0 , v 5 } U=\{v_0,v_5\} U={v0,v5}

    在这里插入图片描述

  3. 选中(2,3),17。此时 U = { v 0 , v 5 , v 2 } U = \{v_0,v_5,v_2\} U={v0,v5,v2}

    在这里插入图片描述

  4. 以此类推,就可以得到最小生成树

Kruskal算法

Kruskal算法的基本思想是:设无向连通网为 G = ( V , E ) G=(V,E) G=(V,E) ,令G的最小生成树为 T = ( U , T E ) T=(U,TE) T=(U,TE) ,其初态为 U = V , E = { } U=V,E=\{\} U=VE={} 这样T中各顶点各自构成一个连通分量。然后按照边的权值大小由小到大的顺序,依次考察边集 E 中各条边。若被考察的边的两个顶点术语 T 的两个不同的连通分量,则将此边加入到 TE 中,同时把两个连通分量连接成一个连通分量;若被考察的边的两个顶点同属于一个连通分量,则舍去此边,以免造成回路,如此下去,当 T 中连通分量数量为 1 时,此连通分量便为 G 的一棵最小生成树。

就是每次找一条没加入最小生成树的代价最小的边,如果这边两个顶点属于不同的连通分量,就将这个边加入最小生成树,否则找除去这条以外的最小边,直到所有顶点都在同一个连通分量。

代码实现:

// Kruskal算法
/*
g:无向连通图邻接矩阵
n:顶点个数

return:最小生成树的邻接矩阵
*/
int** graph_minimalSpanningTree_Kruskal(int** g, int n)
{
    // 保存连通分量情况,值不为-1,且相等的顶点为同一个连通分量
    int* V_no = utils_createArr(n, -1);
    // 记录连通分量次数,初始连通分量个数是n
    int v_no_counter = n;
    // 最小生成树的邻接矩阵,也可以用来删除已经选过的边
    int** g_Kruskal = utils_create2DArr(n,n,-1);
	// 记录最小边的数据
    int w_i,w_j,w=-1;

    // 因为每次加入一条边就减少一个连通分量,所以循环 n-1 次就可以了
    while(--v_no_counter)
    {
        w = -1;
        // 选出符合条件的边
        for(int i = 0; i < n; i ++)
        {
            // 因为邻接矩阵是关于主对角线对称的,所以只需要找一半
            for(int j = i; j < n; j ++)
            {
                // 跳过不存在的边
                if(g[i][j] == -1) continue;
                // 跳过已经被选中的边
                if(g_Kruskal[i][j] != -1) continue;

                // 跳过相同分量的边
                if(V_no[i] == V_no[j] && V_no[i] != -1) continue;

                // 如果w未被赋值或当前边比w小
                if(w == -1 || (w != -1 && g[i][j] < w))
                {
                    w = g[i][j];
                    w_i = i;
                    w_j = j;
                }
            }
        }

        // 将两个连通分量连起来
        if(V_no[w_i] == -1 && V_no[w_j] == -1)
        {
            // 如果两个边都是第一次被选中
            V_no[w_i] = v_no_counter;
            V_no[w_j] = v_no_counter;
        }
        else if(V_no[w_i] != -1 && V_no[w_j] != -1)
        {
            // 两个结点都被选中过
            int w_i_no = V_no[w_i];
            int w_j_no = V_no[w_j];
            for(int i = 0; i < n; i ++)
            {
                // 将与w_j相同分量个顶点加入到w_i分量
                if(V_no[i] == w_j_no) V_no[i] = w_i_no;
            }
        }
        else
        {
            // w_i,w_i只有一个被选中过
            if(V_no[w_i] != -1) V_no[w_j] = V_no[w_j];
            else V_no[w_j] = V_no[w_i];
        }

        // 加入最小生成树邻接矩阵
        g_Kruskal[w_i][w_j] = w;
        printf("(%d,%d),%d\n", w_i, w_j, w);
    }

    return g_Kruskal;
}

测试样例:

在这里插入图片描述

测试代码:

int main()
{
    int arr[27] = {0,1,34,0,5,19,0,2,46,1,4,12,5,4,26,5,2,25,5,3,25,2,3,17,3,4,38};
    int** g = graph_createArrInValue(6, -1);
    graph_createAdjacencyMatrixByArrWithWeight(g,arr, 27, 0);

    printf("原图邻接矩阵:\n");
    graph_print(g, 6, "%2d ");
    printf("\n");
    int** g_prim = graph_minimalSpanningTree_Kruskal(g, 6);

    printf("最小生成树邻接矩阵:\n");
    graph_print(g_prim, 6, "%2d ");
    return 0;
}

运行结果:

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值