DeepLog实验(自用)

本文档详述了如何在Windows环境下通过SSH连接服务器,激活并配置Anaconda环境,特别是创建并激活名为'pythonLog'的环境,安装PyTorch 1.10.2版本。接着,作者进行了DeepLog的训练和预测实验,包括安装所需库,修改迭代次数,并最终成功运行数据可视化。遗留问题是在服务器上无法使用'nvidia-smi'命令检查CPU使用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、连接服务器
1、Windows打开cmd
2、去存放key文件的目录下
1、2步骤显示
3、连接服务器

ssh 21181214480@10.250.0.240 -i 21181214480.key

在这里插入图片描述
二、配置环境
4、进入anaconda环境

source /apps/software/anaconda3/etc/profile.d/conda.sh
conda env list

在这里插入图片描述
5、激活环境,进入python,测试是否安装pytorch(没安装)
在这里插入图片描述
6、创建新环境,安装DeeoLog实验的pytorch环境(因为想使用低版本的torch,该环境的python版本3.9太高,无法安装,最后安装失败)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
7、重新创建环境,pythonLog,python版本为3.6
在这里插入图片描述
在这里插入图片描述

conda activate pythonLog

在这里插入图片描述
8、配置pytorch环境(成功)

官网查找适用安装代码
pytorch下载网址
选择合适的版本下载在这里插入图片描述

pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

在这里插入图片描述
9、(遗留问题)无法使用命令查看cpu使用情况

nvidia-smi

在这里插入图片描述
三、DeepLog实验
1、运行LogKeyModel_train.py,安装tensorboard

cd DeepLog-master

在这里插入图片描述

在这里插入图片描述

python LogKeyModel_train.py

在这里插入图片描述

pip install tensorboard

在这里插入图片描述
在这里插入图片描述
2、继续运行LogKeyModel_train.py,修改迭代次数(减少次数,300换成10)
在这里插入图片描述

3、修改次数后,跑通LogKeyModel_train.py(成功)
在这里插入图片描述
4、继续运行LogKeyModel_predict.py(失败,因为train修改,所以predict也需修改部分)

python LogKeyModel_predict.py

在这里插入图片描述
在这里插入图片描述
5、成功运行LogKeyModel_predict.py
在这里插入图片描述
6、运行python dataView.py

python dataView.py

在这里插入图片描述
7、运行python visual.py,安装matplotlib

python visual.py
pip install matplotlib

在这里插入图片描述
8、实验成功,下一步使用服务器运行参数300的实验

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值