NoSQL简介

为什么要用Nosql

单机 MySql 的时代

90年代,一个基本的网站访问量一般不会太大,单个数据库完全足够!那个时候,更多的去使用静态网页Html ~服务器根本没有太大的压力!思考一下,这种情况下:整个网站的瓶颈是什么?

  • 数据量如果太大,一个机器放不下了!
  • 数据的索引(B+ Tree),一个机器内存也放不下
  • 访问量(读写混合),一个服务器承受不了~


 

Memcached (缓存) + MySQL +垂直拆分

网站80%的情况都是在读,每次都要去查询数据库的话就+分的麻烦!所以说我们希望减轻数据的压力,我们可以使用缓存来保证
效率!

发展过程:优化数据结构和索引-->文件缓存( I0 )-->Memcached (当时最热门的技术! )


 

当今的企业架构分析

分库分表 + 水平拆分 + MySQL集群

本质:数据库(读.写)

早些年MyISAM:表锁,十分影响效率!高并发下就会出现严重的锁问题
转战Innodb:行锁

慢慢的就开始使用分库分表来解决写的压力!


 

如今最近的年代

2010--2020十年之间,世界已经发生了翻天覆地的变化; ( 定位,也是一种数据, 音乐,热榜!)
MySQL等关系型数据库就不够用了!数据量很多,变化很快!
MySQL有的使用它来存一些比较大的文件,博客,图片!数据库表很大,效率就低了!如果有一种数据库来专门处理这种数据
MySQL压力就变得十分小(研究如何处理这些问题! ) 大数据的 IO 压力下,表几乎没法更大!

目前一个基本的互联网项目

为什么要用NoSQL

用户的个人信息,社交网络.地理位置。用户自己产生的数据,用户日志等等爆发式增长。
这时候我们就需要使用NoSQL数据库的。Nosql 可以很好的处理以上的情况。

什么是NoSQL

NoSQL = Not Only SQL (不仅仅是SQL )
关系型数据库:表格,行,列
泛指非关系型数据库的,随着web2.0互联网的诞生。传统的关系型数据库很难对付web2.0时代。尤其是超大规模的高井发的社
区。暴露出来很多难以克服的问题, NoSQL在当今大数据环境下发展的十分迅速,Redis是发展最快的,而且是我们当下必须要掌
握的一个技术。
很多的数据类型用户的个人信息,社交网络,地理位置。这些数据类型的存储不需要一个固定的格式!不需要多月的操作就可以横
向扩展的。 Map<string,Object> 使用键值对来控制。

NoSQL的特点

解耦!

  1. 方便扩展(数据之间没有关系,很好扩展 )
  2. 大数据量高性能( Redis一秒写8万次,读取11万, NoSQL的缓存记录级,是-一种细粒度的缓存,性能会比较高)
  3. 数据类型是多样型的 ( 不需要事先设计数据库,随取随用!如果是数据量十分大的表,很多人就无法设计了 )
  4. 传统 RDBMS 和 NoSQL

传统的RDBMS
- 结构化组织
- SQL
- 数据和关系都存在单独的表中
- 操作语言,数据定义语言
- 严格的一致性
- 基础的事务

Nosq1
- 不仅仅是数据
- 没有固定的查询语言
- 键值对存储,列存储。文档存储,图形数据库(社交关系)
- 最终一致性
- CAP定理 和 BASE (异地多活) 
- 高性能,高可用,高可扩

 了解:3V+ 3高

大数据时代的3V:主要是描述问题的

  1. 海量 Volume
  2. 多样 Variety
  3. 实时 Velocity

大数据时代的3高:主要是对程序的要求

  1. 高并发
  2. 高可拓
  3. 高性能

NoSQL的四大分类

KV键值对

  • 新浪: Redis
  • 美团: Redis + Tair
  • 阿里、百度:Redis + memecache

 

文档型数据库( bson格式和json一样) 

  • MongoDB ( -般必须要掌握)
  1. MongoDB是一 个基于分布式文件存储的数据库,C++编写,主要用来处理大量的文档
  2. MongoDB是一 个介于关系型数据库和非关系型数据中中间的产品,MongoDB是非关系型数据库中功能最丰富,最像关
    系型数据库的
  • ConthDB 

列存储数据库

  • HBase
  • 分布式文件系统

图关系数据库

它不是存图形,放的是关系,比如:朋友圈社交网络,广告推荐
Neo4j ,InfoGrid ;

分类举例典型应用场景数据模型优点缺点
键值(key-value)Tokyo Cabinet / Tyrant,Redis, Voldemort,Oracle BDB内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。Key 指向 Value 的键值对,通常用hash table来实现查找速度快数据无结构化,通常只被当作字符串或者二进制数据
列存储数据库Cassandra, HBase,Riak分布式的文件系统以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强, 更容易进行分布式扩展功能相对局限
文档型数据库CouchDB, MongoDbWeb应用(与Key-Value 类似,Value是结构化的,不同的是数据库能够了解Value的内容)Key-Value对应的键值对,Value为结构化数据数据结构要求不严格 ,表结构可变,不需要像关系型数据库一样需要预先定义表结构查询性能不高,而且缺乏统-的查询语法
图形(Graph)数据库Neo4J, InfoGind,Infinite Graph社交网络,推荐系统等。专注于构建关系图谱图结构利用图结构相关算法。比如最短路径寻址,N度关系查找等很多时候需要对整个图做计算才能得出需要的信息 ,而且这种系查找等的集群方案

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值