K8S的灰度发布、滚动更新、蓝绿发布

K8S灰度发布、蓝绿发布、滚动更新

一、简介

1.1灰度发布(金丝雀发布)

金丝雀发布一般是先发1台机器,或者一个小比例,例如2%的服务器,主要做流量验证用,也称为金丝雀 (Canary) 测试,国内常称灰度测试。以前矿工下矿前,会先放一只金丝雀进去用于探测洞里是否有有毒气体,看金丝雀能否活下来,金丝雀发布由此得名。

简单的金丝雀测试一般通过手工测试验证,复杂的金丝雀测试需要比较完善的监控基础设施配合,通过监控指标反馈,观察金丝雀的健康状况,作为后续发布或回退的依据。如果测试通过,则把剩余的 V1 版本全部升级为 V2 版本。如果金丝雀测试失败,则直接回退金丝雀,发布失败。

缺点: 自动化流程不够,发布期间需要人为去操作,可能会引起服务中断等。

1.2滚动更新

在金丝雀发布基础上的进一步优化改进,是一种自动化程度较高的发布方式,用户体验比较平滑,是目前成熟型技术组织所采用的主流发布方式。

一次滚动式发布一般由若干个发布批次组成,每批的数量一般是可以配置的(可以通过发布模板定义)。例如,第一批1台(金丝雀),第二批10%,第三批 50%,第四批100%。每个批次之间留观察间隔,通过手工验证或监控反馈确保没有问题再发下一批次,所以总体上滚动式发布过程是比较缓慢的 (其中金丝雀的时间一般会比后续批次更长,比如金丝雀10 分钟,后续间隔 2分钟)。

1.3蓝绿发布

一些应用程序只需要部署一个新版本,并需要立即切到这个版本。因此,我们需要执行蓝/绿部署。在进行蓝/绿部署时,应用程序的一个新副本(绿)将与现有版本(蓝)一起部署。然后更新应用程序的入口/路由器以切换到新版本(绿)。然后,您需要等待旧(蓝)版本来完成所有发送给它的请求,但是大多数情况下,应用程序的流量将一次更改为新版本;Kubernetes不支持内置的蓝/绿部署。

目前最好的方式是创建新的部署,然后更新应用程序的服务(如service)以指向新的部署;蓝绿部署是不停老版本,部署新版本然后进行测试,确认OK后将流量逐步切到新版本。蓝绿部署无需停机,并且风险较小。需要路由或者ingress的配合。

缺点: 切换是全量的,如果新版本有问题,则对用户体验有直接影响, 需要双倍机器资源。

二、思路原理

2.1.1名词解释

总体思路在于使用deployment的滚动更新控制。首先是要学会查看K8S提供的接口以及相应的接口解释。

 

如上图就是使用以下两个命令达到效果:
kubectl api-resources #展示K8S提供的接口资源

kubectl explain deployments.spec.strategy.rollingUpdate #查看K8S提供的接口资源的详细解释

具体解释如下:

type : Can be “Recreate” or “RollingUpdate”. Default is RollingUpdate.滚动发布

rollingUpdate: 仅在type为RollingUpdate时有效

rollingUpdate.maxSurge 最大可超期望的节点数,百分比 10% 或者绝对数值 5

rollingUpdate.maxUnavailable 最大不可用节点数,百分比或者绝对数值

这些接口实际上都是在yaml中可以实现调用,举例yaml如下:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: rollingupdate

spec:

  strategy:

    rollingUpdate:

      maxSurge: 25%         #滚动升级时先启动的pod数量

      maxUnavailable: 25%   #滚动升级时允许的最大unavailable的pod数量

    type: RollingUpdate

  selector:

    matchLabels:

      app: rollingupdate

<think>好的,我现在需要帮助用户理解蓝绿发布灰度发布的概念及区别。用户已经提供了四个引用内容,我需要仔细分析这些资料,并结合自己的知识,给出清晰准确的回答。 首先,用户的问题明确:想了解蓝绿发布灰度发布的概念及区别。根据引用[1]、[2]、[3]、[4]中的信息,我需要分别整理两种发布方式的特点,然后比较它们的异同。 引用[1]提到,灰度发布也叫金丝雀发布,是逐步将用户迁移到新版本,通过AB测试来验证新版本的稳定性。引用[2]则指出,蓝绿发布有两套系统,绿色是当前运行的,蓝色是新版本,切换时直接替换。引用[3]详细描述了蓝绿发布的流程,即同时运行两套系统,切换流量到蓝色系统。引用[4]虽然主要是推广内容,但再次确认了蓝绿发布的结构。 接下来,我需要将这些信息结构化。首先定义蓝绿发布:两套独立环境,切换流量,快速回滚。然后灰度发布:逐步发布,部分用户试用,逐步扩大范围。比较时,可以从部署结构、流量切换方式、回滚策略、适用场景等方面展开。 另外,用户之前的提问是关于Kubernetes的Pod带宽设置,可能与当前问题关系不大,但需要确保回答的连贯性。不过根据当前问题,重点在发布策略,所以应专注于蓝绿灰度的对比。 需要确认是否存在其他区别,比如资源占用方面,蓝绿需要双倍资源,而灰度可以逐步替换,资源占用较少。同时,灰度发布更适合需要逐步验证的场景,而蓝绿适合快速切换回滚的情况。 另外,用户可能对实际应用场景感兴趣,比如在什么情况下选择哪种发布方式。比如,蓝绿适合重大版本更新,而灰度适合小功能迭代或A/B测试。 需要确保回答结构清晰,分点说明,使用用户提供的引用作为支持,并在适当位置添加引用标记。同时,生成相关问题,帮助用户进一步探索。 最后,检查是否符合之前的系统级指令:使用正确的中文,LaTeX格式无误,分点回答,引用标记正确,问题相关且合理。</think>### 蓝绿发布 vs 灰度发布:核心概念与差异解析 #### 一、概念定义 1. **蓝绿发布 (Blue-Green Deployment)** 通过维护**两套完全独立的生产环境**(蓝色/绿色)实现版本切换。旧版本(绿色环境)与新版本(蓝色环境)同时存在,通过流量切换完成发布[^3]。 $$ \text{流量切换公式:总流量} = \begin{cases} 100\% \rightarrow \text{绿色环境} & \text{切换前} \\ 100\% \rightarrow \text{蓝色环境} & \text{切换后} \end{cases} $$ 2. **灰度发布 (Canary Release)** 通过**渐进式流量分配**验证新版本,初始仅将小部分流量(如1%-5%)导向新版本,逐步扩大范围直至全量替换[^1]。 $$ \text{流量分配公式:新版本流量占比} = k \cdot t \quad (0 < k < 1, \ t \geq 0) $$ #### 二、核心差异对比 | **维度** | **蓝绿发布** | **灰度发布** | |------------------|--------------------------------------|--------------------------------------| | **环境数量** | 需要双倍资源(两套完整环境)[^3] | 单环境逐步替换(资源占用更少) | | **流量切换方式** | 全量瞬间切换(0/100或100/0)[^3] | 渐进式分流(1%→5%→20%...)[^1] | | **回滚速度** | 秒级回滚(直接切回旧环境) | 分钟级回滚(需调整流量比例) | | **适用场景** | 重大版本更新、数据库迁移等高风险变更 | 功能迭代、A/B测试、稳定性验证 | | **监控要求** | 需全量监控新环境健康状态 | 需细粒度监控新旧版本对比指标 | #### 三、典型技术实现 1. **蓝绿发布技术路径** ```mermaid graph LR A[负载均衡器] -->|切换前| B(绿色环境-v1.0) A -->|切换后| C(蓝色环境-v2.0) D[旧流量] -.-> B E[新流量] -.-> C ``` 2. **灰度发布流量控制**(以Kubernetes Ingress为例) ```yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: annotations: nginx.ingress.kubernetes.io/canary: "true" nginx.ingress.kubernetes.io/canary-weight: "10" # 10%流量导向新版本 ``` #### 四、选择决策树 使用以下流程图判断适用场景: ```plaintext 是否需要即时全量回滚能力? ├─ 是 → 蓝绿发布 └─ 否 → 是否需要长期并行验证? ├─ 是 → 灰度发布(配合A/B测试) └─ 否 → 滚动发布(常规迭代) ``` #### 五、混合使用场景示例 某电商平台在"双11"期间采用**蓝绿发布+灰度发布组合策略**: 1. 先通过蓝绿发布完成底层架构升级 2. 在新环境(蓝色)内对促销功能进行灰度发布 3. 最终实现零宕机风险的核心系统升级与可控的功能验证[^2] --- ### 关键结论 1. **风险控制差异**:蓝绿发布通过环境隔离降低风险,灰度发布通过流量稀释降低影响面[^4] 2. **成本权衡**:蓝绿发布需要双倍资源成本,灰度发布需要更复杂的流量治理能力 3. **演进趋势**:云原生场景中,Istio等服务网格技术使灰度发布精细化控制成本大幅降低 --- ### 相关问题 1. 如何结合Kubernetes实现蓝绿发布的自动化切换? 2. 灰度发布中如何根据业务指标(如错误率)动态调整流量比例? 3. 蓝绿发布在数据库迁移场景中需要注意哪些特殊问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值