归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
根据具体的实现,归并排序包括"从上往下"和"从下往上"2种方式。
1. 从下往上的归并排序:将待排序的数列分成若干个长度为1的子数列,然后将这些数列两两合并;得到若干个长度为2的有序数列,再将这些数列两两合并;得到若干个长度为4的有序数列,再将它们两两合并;直接合并成一个数列为止。这样就得到了我们想要的排序结果。(参考下面的图片)
2. 从上往下的归并排序:它与"从下往上"在排序上是反方向的。它基本包括3步:
① 分解 -- 将当前区间一分为二,即求分裂点 mid = (low + high)/2;
② 求解 -- 递归地对两个子区间a[low...mid] 和 a[mid+1...high]进行归并排序。递归的终结条件是子区间长度为1。
③ 合并 -- 将已排序的两个子区间a[low...mid]和 a[mid+1...high]归并为一个有序的区间a[low...high]。
归并排序时间复杂度
归并排序的时间复杂度是O(N*lgN)。
假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢?
归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是O(N*lgN)。
归并排序稳定性
归并排序是稳定的算法,它满足稳定算法的定义。
算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!
代码
// 自上而下
public class MergeSort {
private static Comparable[] aux; // 归并所需的辅助数组
public static void main(String[] args){
Comparable[] a = {'s','o','r','t','e','x','a','m','p','l','e'};
sort(a);
show(a);
}
public static void sort(Comparable[] a){
aux = new Comparable[a.length]; // 一次性分配空间
sort(a, 0, a.length - 1);
}
private static void sort(Comparable[] a, int lo, int hi){
// 将数组a[lo..hi]排序
if(hi <= lo) return ;
int mid = lo + (hi-lo)/2;
sort(a, lo, mid); // 将左半边排序
sort(a, mid + 1, hi); // 将右半边排序
merge(a, lo, mid, hi); // 归并结果
}
public static void merge(Comparable[] a, int lo, int mid, int hi){
// 将a[lo..mid]和a[mid+1..hi]归并
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++){ // 将a[lo..hi]复制到aux[lo..hi]
aux[k] = a[k];
}
for (int k = lo; k <= hi; k++){ // 归并回到a[lo..hi]
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j],aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}
}
// 元素比较大小
private static boolean less(Comparable v, Comparable w){
return v.compareTo(w) < 0;
}
// 输出数组
private static void show(Comparable[] a){
for (int i=0;i < a.length;i++)
System.out.print(a[i] + " ");
System.out.println();
}
}
// 从下往上
public class MergeBUSort {
private static Comparable[] aux; // 归并所需的辅助数组
public static void main(String[] args){
Comparable[] a = {'s','o','r','t','e','x','a','m','p','l','e'};
sort(a);
show(a);
}
public static void sort(Comparable[] a){
// 惊醒lgN 次两两归并
int N = a.length;
aux = new Comparable[N];
for (int sz = 1; sz < N; sz = sz + sz) // sz子数组大小
for (int lo = 0; lo < N-sz; lo += sz+sz) // lo:子数组索引
merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}
public static void merge(Comparable[] a, int lo, int mid, int hi){
// 将a[lo..mid]和a[mid+1..hi]归并
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++){ // 将a[lo..hi]复制到aux[lo..hi]
aux[k] = a[k];
}
for (int k = lo; k <= hi; k++){ // 归并回到a[lo..hi]
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j],aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}
}
// 元素比较大小
private static boolean less(Comparable v, Comparable w){
return v.compareTo(w) < 0;
}
// 输出数组
private static void show(Comparable[] a){
for (int i=0;i < a.length;i++)
System.out.print(a[i] + " ");
System.out.println();
}
}