双调欧几里得旅行售货员问题(dp)

前两天做了算法课设,老师给了这个题,今天把写的课设整理一下(下面有从别的博客弄过来的图片,若博主看到了,可以联系删除,hhhh)

问题描述

欧氏旅行售货员问题是对给定的平面上 n 个点(这n个点的x坐标都不相同)确定一条连接这 n 个点的长度最短的哈密 顿回路。由于欧氏距离满足三角不等式,所以欧氏旅行售货员问题是一个特殊的具有三角不 等式性质的旅行售货员问题。它仍是一个 NP 完全问题。最短双调 TSP 回路是欧氏旅行售货 员问题的特殊情况。平面上 n 个点的双调 TSP 回路是从最左点开始,严格地由左至右直到最右点,然后严格地由右至左直至最左点,且连接每一个点恰好一次的一条闭合回路。

给定平面上 n 个点,编程计算这 n 个点的最短双调 TSP 回路。

数据输入:
第 1 行有 1 个正整数 n,表示给定的平面上的点数。接下来的 n 行中,每行 2 个实数,分别表示点的 x 坐标和 y 坐标
数据输入:

0 6
1 0
2 3
5 4
6 1
8 2
7 5
数据输出:
25.58

问题分析

这种旅程是从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点,并且需要经过所有的点,如下图
在这里插入图片描述
注解:
(a)为最短闭合路线,这个路线不是双调的
(b)为最短双调闭合路线
首先我们
定义dist(i,j) :表示结点i到结点j的直线距离(即i,j直接相连)
定义b[i][j] : 表示从i连到1(最左点),再从1连到j的距离(i<j-1,且并没有相连)

在求路径b[i][j]时,点i一定在i->1的路径中,点j一定在1->j的路径上,现在考虑与点j直接相连点的位置,分以下三种情况
①i<j-1
此时点j-1在点i的右边,说明j-1一定在1->j的路径上,而不在i->1的路径上,由于j-1是1->j路径上除 j 外最靠右的点,所以与 j 直接相连的点是 j-1,如下图所示
在这里插入图片描述
②i=j-1
此时点j-1位于i->1的路径上,而此时与点j直接相连的可以是1~j-2中的任意一点k,如下图所示
在这里插入图片描述
③i=j
在这种情况下,i->j是一条闭合路径。这种情况只会发生在i=j=n。此时点j−1即为点n−1,而点n-1可以在路径1->n上,也可以在n->1上,总之无论是哪条路径点,n-1都直接与点n相连,因为点n-1是除n外最右边的点,如下图所示
在这里插入图片描述
根据上图,很容易写出递推方程式:
b[i][j] = b[i][j-1]+dist(j-1,j); (i<j-1)
b[i][j] = min( b[k][j-1]+dist(k,j) ); (i=j-1)
b[i][j] = b[n-1][n] + dist(n-1,n); (i=j=n)

上代码

typedef struct{
double x;
double y;
}Point;

double DP(Point *points,int n)  
//这里points[]用于存储n个点的信息
{  
    double b[MaxLen][MaxLen];//b[i][j]表示从i连到1,再从1连到j的路径长度 
    //计算所有情况下的b[i][j],1 <= i <= j  
    b[1][2] = dist(points,1,2);//初始化,1和2一定相连,因为最后必须是一个闭合回路  
for (int j=3; j<=n; ++j)
 {  
        //i < j-1 ,j-1和j相连   
        for (int i=1; i<=j-2; ++i)  
        {   //之所以用到j-1是为了利用子问题的结论,从而解决主问题
            b[i][j] = b[i][j-1] + dist(points,j-1,j); 
        }  
        //i = j - 1, j-1和j不相连 
        b[j-1][j] = MaxVal;  
        /*
		因为计算从b[j-1][j],所以k需要从1到j-2作为中转点 
		计算b[k][j-1]+dist(k,j),从k到1再到j-1 + (k,j)直线距离  
		*/
        for(int k=1; k<=j-2; ++k)
{  
            double temp = b[k][j-1] + dist(points,k,j);  
            if (temp < b[j-1][j]) 
{  
                b[j-1][j] = temp;  
            }  
        }  
    }  
    b[n][n] = b[n-1][n] + dist(points,n-1,n);  
    return b[n][n];  
}  

运行结果
在这里插入图片描述

  • 15
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
双调旅行员售货问题是一种经典的优化问题,在这里提供一个采用动态规划思想解决的 C 语言实现代码。 ``` #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXN 1000 #define INF 0x3f3f3f3f int n; // 城市数量 int dist[MAXN][MAXN]; // 距离矩阵 int dp[MAXN][MAXN]; // 动态规划数组 int path[MAXN][MAXN]; // 路径记录数组 int cmp(const void *a, const void *b) { return *(int *)a - *(int *)b; } int main() { scanf("%d", &n); // 读入距离矩阵 for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { scanf("%d", &dist[i][j]); } } // 初始化动态规划数组 memset(dp, INF, sizeof(dp)); dp[1][1] = 0; // 动态规划 for (int i = 2; i <= n; i++) { for (int j = 1; j <= i - 1; j++) { for (int k = 1; k <= j; k++) { int cost = dist[k][i] + dp[j][k]; if (cost < dp[i][j]) { dp[i][j] = cost; path[i][j] = k; } } } } // 找到最小距离 int ans = INF; int k = 1; for (int j = 1; j < n; j++) { if (dp[n][j] + dist[j][n] < ans) { ans = dp[n][j] + dist[j][n]; k = j; } } // 输出路径 int p = n; int q = k; int route[MAXN]; int len = 0; while (p > 1 || q > 1) { route[len++] = p; p = q; q = path[p][q]; } route[len++] = 1; // 反转路径 qsort(route, len, sizeof(int), cmp); for (int i = 0; i < len; i++) { printf("%d ", route[i]); } printf("\n"); // 输出最小距离 printf("%d\n", ans); return 0; } ``` 其中,`dist` 数组表示城市之间的距离矩阵,`dp` 数组表示动态规划数组,`path` 数组用于记录路径。在动态规划过程中,通过枚举上一个城市和倒数第二个城市的位置,计算当前城市到倒数第二个城市的距离加上到上一个城市的最小距离,取最小值即可。最后,通过回溯 `path` 数组,可以找到最优路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bugcoder-9905

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值