【最幸运的数字】(欧拉降幂)

题目:

8是中国的幸运数字,如果一个数字的每一位都由8构成则该数字被称作是幸运数字。

现在给定一个正整数L,请问至少多少个8连在一起组成的正整数(即最小幸运数字)是L的倍数。

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含一个整数L。

当输入用例L=0时,表示输入终止,该用例无需处理。

输出格式

每组测试用例输出结果占一行。

结果为“Case 1: ”+一个整数N,N代表满足条件的最小幸运数字的位数。

如果满足条件的幸运数字不存在,则N=0。

数据范围

1≤L≤2∗1091≤L≤2∗109

输入样例:

8
11
16
0

输出样例:

Case 1: 1
Case 2: 2
Case 3: 0

解题报告:怎么说,一上来就想着是不是可以直接去暴力循环去求解,后来发现找不到跳出条件,就转化了一下思维:

考虑x个8的整数可以表示为(10^x−1)/9×8,于是这个问题相当于求解最小的x满足:
(10^x−1)/9×8≡0 (mod L)

整理下就是:
8(10^x−1)≡0 (mod 9L)

为了满足条件,8的存在可以化简一下模数,直接放进去考虑,即:
10^x−1≡0 (mod 9L/gcd(L,8))

也就是:
10^x≡1 (mod 9L/gcd(L,8))
 

令p=9L/gcd(L,8),考虑x与p不一定互质,所以应用欧拉定理,得到一个可行解:令x=ϕ(p)
10^ϕ(p)≡1 (mod p)

由于ϕ(p)不一定是满足条件的最小自然数,但是可以证明满足上式的x一定是ϕ(p)的因子,于是我们去枚举ϕ(p)的因子判断是否满足条件即可。

ac代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

int t;
ll l;

ll phi(ll x)
{
	ll res=x;
	for(int i=2;i*i<=x;i++)
	{
		if(x%i==0)
		{
			res=res/i*(i-1);
			while(x%i==0)
				x/=i;
		}
	}
	if(x>1)
		res=res/x*(x-1);
	return res;
}
ll ksm(ll a,ll b,ll c)
{
	ll res=1;
	while(b)
	{
		if(b&1)
			res=(res*a)%c;
		a=(a*a)%c;
		b>>=1;
	}
	return res;
}
int main()
{
	int kase=0;
	while(cin>>l)
	{
		if(l==0)
			break;
		cout<<"Case "<<++kase<<": ";
		ll mod=l/__gcd(8ll,l)*9ll;
		ll p=phi(mod);
		ll res=1e18;
		for(ll x=1;x*x<=p;x++)
		{
			if(p%x!=0) continue;
		if(ksm(10,x,mod)==1) res=min(res,x);
		if(ksm(10,p/x,mod)==1) res=min(res,p/x);
		}
		if(res==1e18)
			cout<<"0"<<endl;
		else
			cout<<res<<endl;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值