最幸运的数字-------------------------------数论(欧拉定理)

8是中国的幸运数字,如果一个数字的每一位都由8构成则该数字被称作是幸运数字。

现在给定一个正整数L,请问至少多少个8连在一起组成的正整数(即最小幸运数字)是L的倍数。

输入格式
输入包含多组测试用例。

每组测试用例占一行,包含一个整数L。

当输入用例L=0时,表示输入终止,该用例无需处理。

输出格式
每组测试用例输出结果占一行。

结果为“Case 1: ”+一个整数N,N代表满足条件的最小幸运数字的位数。

如果满足条件的幸运数字不存在,则N=0。

数据范围
1≤L≤2∗109
输入样例:
8
11
16
0
输出样例:
Case 1: 1
Case 2: 2
Case 3: 0

解析:

8888…8888 假设有x个8
那么可以分解成 8*(11…111) x个1
再分解 8*(10x-1)/9
因为是L的倍数 ,所以 9L| 8*(10x-1)
8*(10x-1)≡0(mod 9L)
因为有常数8,所以我们可以化简模数
10x≡ 1(mod 9 l g c d ( l , 8 ) \frac{9l}{gcd(l,8)} gcd(l,8)9l)

令C= 9 l g c d ( l , 8 ) \frac{9l}{gcd(l,8)} gcd(l,8)9l
10x≡ 1(mod C)
想到欧拉定理

(a,n)是互质的
在这里插入图片描述
所以若(10,C)不互质则无解

题目又要求最小的满足的
所以我们对φ©分解因数
最终就是求φ©约数最小的满足

此题快速幂会爆long long 所以配合快速乘

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll l;
int k;
ll qmul(ll a,ll b,ll mod)
{
	ll res=0;
	while(b)
	{
		if(b&1) res=(res+a)%mod;
		a=(a+a)%mod;
		b>>=1;
	}
	return res;
}
ll qmi(ll a,ll b,ll mod)
{
	ll res=1;
	while(b)
	{
		if(b&1) res=qmul(res,a,mod);
		a=qmul(a,a,mod);
		b>>=1;
	}
	return res;
}
ll get_eleur(ll n)
{
	ll res=n;
	for(int i=2;i<=n/i;i++)
	{
		if(n%i==0)
		{
			res=res/i*(i-1);
			while(n%i==0) n/=i;
		}
	}
	if(n>1) res=res/n*(n-1);
	return res;
}
int main()
{
	while(scanf("%lld",&l)&&l)
	{
		cout<<"Case "<<++k<<":"<<" ";
		ll c=9*l/__gcd(l,8*1ll);
		ll phi=get_eleur(c);
		cout<<c<<"  "<<phi<<"  "<<endl;
		ll res=1e18;
		if(c%2==0||c%5==0) res=0;
		else
		{
			for(ll d=1;d*d<=phi;d++)
			{
				if(phi%d==0)
				{
					if(qmi(10,d,c)==1) res=min(res,d);
					if(qmi(10,phi/d,c)==1 )  res=min(res,phi/d);
 				}
			}
		}
		cout<<res<<endl;

	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值