Frechet Distance(弗雷歇距离)代码基于python实现

Frechet Distance

Frechet distance 是法国数学家 Maurice Rene Frechet 在1906年提出的一种路径空间相似形描述,直观理解,Frechet Distance 就是狗绳距离:主人走路径A,狗走路径B,各自走完这两条路径过程中所需要的最短狗绳长度

以下是对于一维数据,两条曲线进行弗雷歇距离计算,作为曲线相似度的度量值一:
def calculate_euclid(point_a, point_b):
    """
    Args:
        point_a: a data point of curve_a
        point_b: a data point of curve_b
    Return:
        The Euclid distance between point_a and point_b
    """
    return math.sqrt((point_a - point_b)**2)
def calculate_frechet_distance(dp,i,j ,curve_a, curve_b):
    """
    Args:
        dp: The distance matrix
        i: The index of curve_a
        j: The index of curve_b
        curve_a: The data sequence of curve_a
        curve_b: The data sequence of curve_b
    Return:
        The frechet distance between curve_a[i] and curve_b[j]
    """
    if dp[i][j] > -1:<
  • 4
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值