大数据毕业设计-基于大数据爬虫+Spark+Hadoop的汽车行业数据分析与可视化平台,基于Spark+Hadoop的的新能源汽车数据爬取分析可视化系统(源码+LW+部署文档+远程调试+代码讲解等)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战
✌️技术范围::小程序、SpringBoot、SSM、JSP、Vue、PHP、Java、python、爬虫、数据可视化、大数据、物联网、机器学习等设计与开发。
主要内容:免费开题报告、任务书、全bao定制+中期检查PPT、代码编写、🚢文编写和辅导、🚢文降重、长期答辩答疑辅导、一对一专业代码讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路。
特色服务内容:答辩必过班 (全程一对一技术交流,帮助大家顺利完成答辩,小白必选)
累计帮助2000+完成优秀毕设
🍅文末获取源码联系🍅
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及🚢文编写等相关问题都可以给我留言咨询,希望帮助更多的人
2025年最新最全毕业设计项目推荐,涉及到计算机专业,大数据专业,人工智能专业等,可免费帮大家选题并免费写开题报告✅✅✅

演示视频

请文末卡片dd我获取更详细的演示视频

在这里插入图片描述

系统功能

汽车行业大数据分析系统是一款集成了数据采集、处理、分析和可视化的高级平台。该系统能够通过高效的数据仓库技术进行存储和管理。利用先进的分析算法,系统可以对车辆性能进行深入分析,该系统还具备强大的可视化功能,通过图表、报表等形式直观展示分析结果,使非技术人员也能轻松理解和利用大数据带来的价值。汽车行业大数据分析系统是推动企业数字化转型、增强竞争力的关键工具。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
通过本系统能够将用户的信息管理工作规范化、简单化,从而提高管理工作的效率。本论文主要包括系统首页、个人中心、用户、汽车信息、汽车论坛、系统管理等功能;在windows10的系统环境下,采用的编程语言为java和springboot框架,将mysql作为后台数据库来实现汽车行业大数据分析管理流程中的各种需求。

在这里插入图片描述

部分实现截图

在系统前台首页,调用$route(newValue)方法监听路由变化,根据当前的路由地址来确定活动菜单的索引,并且根据路由的哈希部分(即URL的#后面的部分)来判断是否需要滚动页面到顶部或者某个特定元素的位置。如果不是首页,会将页面滚动到指定元素处,否则滚动到页面顶部。另外通过headportrait()方法用于更新组件渲染点前用户头像。在用户登录后,后端返回了新的用户信息,需要及时更新页面上的用户头像信息。

在系统前台首页,调用$route(newValue)方法监听路由变化,根据当前的路由地址来确定活动菜单的索引,并且根据路由的哈希部分(即URL的#后面的部分)来判断是否需要滚动页面到顶部或者某个特定元素的位置。如果不是首页,会将页面滚动到指定元素处,否则滚动到页面顶部。另外通过headportrait()方法用于更新组件渲染点前用户头像。在用户登录后,后端返回了新的用户信息,需要及时更新页面上的用户头像信息。

在这里插入图片描述

在上一章中,已经本论文中的汽车行业大数据分析系统进行了全面的设计。接下来第五章对本汽车行业大数据分析系统的实现过程进行说明,包括对该汽车行业大数据分析系统所需的开发环境、运行环境的说明以及对上一章中提到的各种内容的实现。

前台功能实现

当人们打开系统的网址后,首先看到的就是首页界面。在这里,人们能够看到系统的导航条,通过导航条导航进入各功能展示页面进行操作。系统首页界面如图5-1所示:

在这里插入图片描述

图5-1 系统首页界面

在注册程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Java后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。系统注册页面如图5-2所示:

在这里插入图片描述

图5-2系统注册页面

汽车信息:在汽车信息页面的输入栏中输入车名或评分进行查询,可以查看到汽车详细信息;并根据需要进行收藏操作;汽车信息页面如图5-3所示:

在这里插入图片描述

图5-3汽车信息详细页面

通知公告:在通知公告页面的输入栏中输入标题进行查询,可以查看到通知公告详细信息,并根据需要进行点赞或收藏操作;通知公告页面如图5-4所示:

在这里插入图片描述

图5-4通知公告详细页面

个人中心:在个人中心页面可以对修改密码、我的发布、我的收藏进行详细操作;如图5-5所示:

在这里插入图片描述

图5-5个人中心界面

管理功能实现

在登录流程中,用户首先在Vue前端界面输入用户名和密码。这些信息通过HTTP请求发送到Java后端。后端接收请求,通过与MySQL数据库交互验证用户凭证。如果认证成功,后端会返回给前端,允许用户访问系统。这个过程涵盖了从用户输入到系统验证和响应的全过程。如图5-6所示。

在这里插入图片描述

图5-6 管理员登录界面

管理员进入主页面,主要功能包括对系统首页、个人中心、用户、汽车信息、汽车论坛、系统管理等进行操作。管理员主页面如图5-7所示:

在这里插入图片描述

图5-7管理员主界面

用户功能在视图层(view层)进行交互,比如点击“查询、添加或删除”按钮或填写用户信息表单。这些用户信息表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改或删除用户信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便用户功能可以看到最新的信息或相应的操作反馈。如图5-8所示:

在这里插入图片描述

图5-8用户界面

汽车信息功能在视图层(view层)进行交互,比如点击“查询、添加、爬取数据或删除”按钮或填写汽车信息表单。这些汽车信息表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改或删除汽车信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便汽车信息功能可以看到最新的信息或相应的操作反馈。如图5-9所示:

在这里插入图片描述

图5-9汽车信息界面

管理员点击汽车论坛,在汽车论坛页面输入帖子标题进行查询或删除汽车论坛信息列表;并对汽车论坛详细信息进行查看、修改、查看评论或删除操作;如图5-10所示:

在这里插入图片描述

图5-10汽车论坛界面

管理员点击系统管理,在系统简介页面输入标题进行查询系统简介信息列表;并对系统简介详细信息进行查看、修改操作;如图5-11所示:

在这里插入图片描述

图5-11系统简介界面
5.3数据信息采集

定义一个Scrapy爬虫类QichexinxiSpider,用于爬取指定网站的汽车信息。name定义了爬虫的名称,spiderUrl指定了目标网站的URL,start_urls将目标网站的URL按分号拆分成一个列表,作为爬取的起始URL。protocolhostname用于定义协议和主机名,暂时为空。realtime用于指定是否实时获取数据,初始化为False。代码如下所示。

class QichexinxiSpider(scrapy.Spider):

    name = 'qichexinxiSpider'

    spiderUrl = 'https://cars.app.autohome.com.cn/carext/recrank/all/getrecranklistpageresult2?from=2&pm=2&pluginversion=11.58.5&model=1&channel=0&pageindex={}&pagesize=20&typeid=1&subranktypeid=1&levelid=0&price=0-9000&date=2024-03'

    start_urls = spiderUrl.split(";")

    protocol = ''

    hostname = ''

    realtime = False

使用parse方法中进行一些初始化操作和判断条件。首先,通过urlparse函数解析self.spiderUrl得到URL的协议和主机名,并将其分别赋值给self.protocol和self.hostname。 然后,通过platform.system().lower()获取当前操作系统的名称,并将其转换为小写字母,保存在plat变量中。 接着,判断条件如果不是实时爬取(self.realtime为False)并且当前操作系统是Linux或Windows,建立数据库连接,并将连接对象赋值给connect变量。获取数据库的游标对象,并将其赋值给cursor变量,调用table_exists函数检查数据库中是否存在名为’5nw5u40i_Shangpinxinxi '的表,如果存在就执行关闭游标和连接,调用temp_data函数,最后返回代码如下所示。

列表解析

def parse(self, response):

    _url = urlparse(self.spiderUrl)

    self.protocol = _url.scheme

    self.hostname = _url.netloc

    plat = platform.system().lower()

    if not self.realtime and (plat == 'linux' or plat == 'windows'):

        connect = self.db_connect()

        cursor = connect.cursor()

        if self.table_exists(cursor, '381f1kqr_qichexinxi') == 1:

            cursor.close()

            connect.close()

            self.temp_data()

            return

    data = json.loads(response.body)

    try:

        list = data["result"]["list"]

使用Scrapy爬虫的回调函数,进行解析详情页面,从response的meta中获取字段对象fileds,最后对其进行赋值和处理。代码如图6-16所示。

try:

    fields["tjriqi"] = emoji.demojize(self.remove_html(str( item.get("test", "")+"2024年03月" )))

except:

    pass

try:

    fields["seriesname"] = emoji.demojize(self.remove_html(str( item["seriesname"] )))

except:

    pass

try:

    fields["seriesimage"] = emoji.demojize(self.remove_html(str( item["seriesimage"] )))

except:

    pass

try:

    fields["ranknum"] = int( item["rankNum"])

except:

    pass

try:

    fields["scorevalue"] = float( item["scorevalue"])

except:

    pass

try:

    fields["zdprice"] = float( item["priceinfo"].split('-')[0])

except:

    pass

try:

    fields["zgprice"] = float( item["priceinfo"].split('-')[1].replace('万',''))

except:

    pass

try:

数据预处理

在基于大数据的商品推荐系统开发中,数据集处理是至关重要的环节。以下是我详细的数据集处理流程:首先,通过各种渠道搜集宠物商品信息数据集,这可能涉及抓取在线宠物商品信息平台的数据、接收资料,以及整合宠物商品公告等。这些数据应涵盖宠物商品的核心详情,例如价格走势统计、店铺商品统计、宠物食品总数、用户总数、宠物食品、商品品牌统计、适用品种统计等。

接着,获取到数据集后,重要的一环是执行数据清洗和预处理步骤。数据清洗的目的是保证数据质量和完整性,涉及消除重复记录、处理未填充的值、修正不准确的信息等。预处理阶段则涵盖数据的格式统一、标准化和转化操作,以适应后续的分析需求。这一过程中,我利用pandas库来进行数据洞察,并结合Scrapy架构进行高效的数据采集和清洗,从而保证数据的精确度和实用性。为了数据的可靠存储和扩展能力,选用MySQL数据库系统。

为了建立与MySQL数据库的连接,我将使用root用户,其密码设定为123456,目标数据库名为spider5nw5u40i。采用pandas的read_sql方法,可以从数据库中提取所需的数据。具体代码实现代码如下所示。

def pandas_filter(self):

    engine = create_engine('mysql+pymysql://root:123456@localhost/spider381f1kqr?charset=UTF8MB4')

    df = pd.read_sql('select * from qichexinxi limit 50', con = engine)

首先检查DataFrame对象df是否存在重复的行,使用’df.drop_duplicates()'函数删除对象中重复行。调用’df.isnull()'函数检测对象df’中的缺失值。随后调用’df.dropna()'函数删除具有缺失值的行。'df.fillna(value=‘暂无’)‘函数将对象df中的缺失值替换为指定的值’暂无’。代码如下所示。

def pandas_filter(self):

    engine = create_engine('mysql+pymysql://root:123456@localhost/spider381f1kqr?charset=UTF8MB4')

    df = pd.read_sql('select * from qichexinxi limit 50', con = engine)

    # 重复数据过滤

    df.duplicated()

    df.drop_duplicates()

    #空数据过滤

    df.isnull()

    df.dropna()

    # 填充空数据

    df.fillna(value = '暂无')

    # 异常值过滤

    # 滤出 大于800 和 小于 100 的

    a = np.random.randint(0, 1000, size = 200)

    cond = (a<=800) & (a>=100)

    a[cond]

    # 过滤正态分布的异常值

    b = np.random.randn(100000)

    # 3σ过滤异常值,σ即是标准差

    cond = np.abs(b) > 3 * 1

    b[cond]

    # 正态分布数据

    df2 = pd.DataFrame(data = np.random.randn(10000,3))

    # 3σ过滤异常值,σ即是标准差

    cond = (df2 > 3*df2.std()).any(axis = 1)

    # 不满⾜条件的⾏索引

    index = df2[cond].index

    # 根据⾏索引,进⾏数据删除

    df2.drop(labels=index,axis = 0)

生成一个包含80个介于0到1000之间的随机整数的数组a,然后定义了一个布尔条件cond,用于筛选满足a在100到800之间的元素。生成一个包含10万个符合标准正态分布的随机数的数组b,定义一个布尔条件cond,用于筛选满足b的绝对值大于3的元素。

创建一个形状为10000行3列的DataFrame df2,其中的数据是符合标准正态分布的随机数。定义一个布尔条件cond,用于筛选在df2中任意一列的值大于三倍标准差的行。该行代码使用索引操作df2[cond].index,获取满足条件cond的行的索引。删除具有指定索引的行,并返回更新后的对象df2。

移除HTML标签,首先,检查html参数是否为None,如果是则返回空字符串。然后使用正则表达式模式匹配HTML标签的正则表达式(<[^>]+>),并通过re.sub函数将匹配到的HTML标签替换为空字符串。最后使用strip函数去除字符串两端的空白字符,并返回处理后的结果。代码如下所示。

去除多余html标签

def remove_html(self, html):

    if html == None:

        return ''

    pattern = re.compile(r'<[^>]+>', re.S)

    return pattern.sub('', html).strip()

在初始化数据库链接流程时,首要任务是从配置文件中提取必要的连接参数,这些参数涵盖了数据库的种类标识、服务器地址、端口、登录凭证,如用户名和密码。如果数据库名称未明确指定,系统会尝试从self.databaseName属性中寻找。接下来,根据所识别的数据库类型动态选择适配的连接技术。例如,如果确认是MySQL,会选择pyMySQL库进行无缝对接;反之,如果不是MySQL,程序将同样采用pyMySQL库来建立连接。最终,这段代码将执行并返回一个有效的连接对象,记作connect,整个过程逻辑严谨且高效。以下是具体实现的代码段如下所示:

将处理好的数据进行数据存储,定义一个包含插入语句的sql字符串,目标数据库表是Shangpinxinxi,列名包括id、jobname、salary等,从表5nw5u40i_Shangpinxinxi中选择符合条件的数据,将这些数据插入到目标表中,代码段如图6-22所示。

数据库连接函数

def db_connect(self):

    # 从配置文件中获取数据库连接信息

    type = self.settings.get('TYPE', 'mysql')  # 数据库类型,默认为 MySQL

    host = self.settings.get('HOST', 'localhost')  # 数据库主机地址,默认为 localhost

    port = int(self.settings.get('PORT', 3306))  # 数据库连接端口,默认为 3306,需转换为整数类型

    user = self.settings.get('USER', 'root')  # 数据库用户名,默认为 root

    password = self.settings.get('PASSWORD', '123456')  # 数据库密码,默认为 123456

    try:

        # 从类属性中获取数据库名

        database = self.databaseName

    except:

        database = self.settings.get('DATABASE', '')  # 从配置文件中获取数据库名,默认为空字符串

    # 根据数据库类型选择不同的数据库连接方式

    if type == 'mysql':

        # MySQL 数据库连接方式

        connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')

    else:

        # MSSQL 数据库连接方式

        connect = pymssql.connect(host=host, user=user, password=password, database=database)

    

    # 返回数据库连接对象

    return connect  

数据结果集

通过爬取https://cars.app.autohome.com.cn网站数据集。数据如图5-12,5-13所示

在这里插入图片描述

图5-12 数据集

在这里插入图片描述

图5-13 数据集

经过数据预处理,将爬取数据存储到数据库中如图5-14所示。

在这里插入图片描述

图5-14 数据库存储汽车信息数据

数据可视化分析

管理员进行爬取数据后可以在看板页面查看到评分统计、最低价格统计、汽车信息、最高价格统计、销量统计、汽车信息统计等实时的分析图进行可视化管理;看板大屏选择了Echart作为数据可视化工具,它是一个使用JavaScript实现的开源可视化库,能够无缝集成到Web应用中。Echart的强大之处在于其丰富的图表类型和高度的定制化能力,使得管理人员可以通过直观的图表清晰地把握汽车行业大数据分析的各项运营数据。为了实现对汽车行业大数据分析信息的自动化收集和更新,采用了Apache Spark作为爬虫技术的基础。Spark的分布式计算能力使得系统能够高效地处理大规模数据,无论是从互联网上抓取最新的汽车行业大数据分析信息,还是对内部数据进行ETL(提取、转换、加载)操作,都能够保证数据的实时性和准确性。在大数据分析方面,系统采用了Hadoop框架。Hadoop是一个能够处理大数据集的分布式存储和计算平台,它的核心是HDFS(Hadoop Distributed File System)和MapReduce计算模型。通过Hadoop,我们可以对收集到的大量数据进行存储和分析。看板页面如图5-14所示:

在这里插入图片描述

图5-14看板详细页面

管理员进行爬取数据后可以在看板页面查看到汽车价格走势统计、汽车总数、用户总数、汽车品牌统计、适用车型统计等实时的分析图进行可视化管理;看板大屏选择了Echart作为数据可视化工具,它是一个使用JavaScript实现的开源可视化库,能够无缝集成到Java Web应用中。Echart的强大之处在于其丰富的图表类型和高度的定制化能力,使得管理人员可以通过直观的图表清晰地把汽车价格走势统计的各项运营数据展现出来。

如图所示,展示了汽车价格走势,包括了汽车的价格、品牌、车型等信息,帮助管理人员直观地了解汽车市场的价格趋势和销售情况。

在这里插入图片描述

图5-15看板详细页面

如图所示,展示了当前系统的汽车信息总数。

在这里插入图片描述

图5-16看板详细页面

如图所示,展示了汽车信息的最高价格统计排名。

在这里插入图片描述

图5-17看板详细页面

如图所示,展示了汽车品类适用品种统计,统计出各个汽车品类用品的数词云图。

在这里插入图片描述

图5-18看板详细页面

可以看出,对于大部分用户在选购汽车时都会选择常见的车型,而对于特定品牌或型号的汽车需求相对均衡。为了实现对汽车价格走势统计的自动化收集和更新,我采用了Apache Spark作为爬虫技术的基础。Spark的分布式计算能力使得系统能够高效地处理大规模数据,无论是从互联网上抓取最新的价格,还是对内部数据进行ETL(提取、转换、加载)操作,都能够保证数据的实时性和准确性。在大数据分析方面,系统采用了Hadoop框架。Hadoop是一个能够处理大数据集的分布式存储和计算平台,它的核心是HDFS(Hadoop Distributed File System)和MapReduce计算模型。通过Hadoop,可以对收集到的大量汽车数据进行存储和分析,包括价格走势、销量统计等,为企业提供数据支持和决策参考。

具体其他的功能就不一一介绍,完整的功能大家可以自己文章底部我的网站上面,或者文档底部直接DD我,获取完整功能视频演示,可直接下载后即可使用,功能比较全面,大家可以在上面做简单的修改即可实现自己的项目需求

项目相关文件

1112233

1234567

项目不仅仅包括源代码,数据库,工具和教程,还有配套的w字lun文,ppt,开题报告等相关完整一套文件,里面包括这种流程设计图,数据库设计图等等;

架构设计

MVC的设计模式

系统采用标准的MVC模式,利用Spring Boot集成Mybatis框架进行开发,将整个系统划分为视图层(View),控制器层(Controller),服务层(Service),以及数据访问层(Data Access Object,简称DAO层)四个主要组成部分。在这种架构下:

视图层(View): 负责前端页面的显示,包括用户界面和管理界面,提供与用户交互的接口。

控制器层(Controller): 接收用户的请求,并将请求转发给相应的服务层组件,同时负责响应的数据模型和视图的选择。

服务层(Service): 实现业务逻辑,并调用DAO层与数据库进行交互。

数据访问层(DAO层): 直接与数据库通信,负责数据的持久化工作,包括数据的查询、更新、插入和删除等操作。

Spring Boot的自带功能简化了请求的转发和视图的渲染管理,内部的Spring容器则负责业务对象的生命周期和依赖注入,极大地提高了开发效率和系统的可维护性。Mybatis作为ORM框架,使得数据库操作更加简便,映射SQL查询到Java对象,而不需要繁琐的JDBC代码。此外,为了提升系统的安全性,我们将集成Shiro进行认证和授权管理,以确保只有经过认证和授权的用户才能访问系统资源。同时,加密模块将用于保护数据的完整性和隐私,防止敏感信息泄露。
整体架构的设计旨在确保系统的安全性、稳定性以及高效性,为用户提供一个安全、可靠的系统体验。
系统架构图如下:

在这里插入图片描述

基于B/S的架构

①**B/S的架构:**系统为了增加系统的可操作性和可维护性采用B/S架构实现,系统包括了浏览器客户端、web服务器端和数据库端。系统架构如图。

在这里插入图片描述

B/S结构是目前使用最多的结构模式,它可以使得系统的开发更加的简单,好操作,而且还可以对其进行维护。使用该结构时只需要在计算机中安装数据库,和一些很常用的浏览器就可以了。浏览器就会与数据库进行信息的连接,可以实现很多的功能,B/S结构是可以直接进行使用的,而且B/S结构在使用中极大的减少了工作的维护。基于B/S的软件,所有的数据库之间都是相互独立的,因此是非常安全的。因为基于B/S结构可以清楚的看到系统正在处理的业务,并且能够及时的让管理人员做出决策,这样就可以避免企业的损失。B/S结构的基本特点是集中式的管理模式,用户使用系统生成数据后,这些数据就可以存储到系统的数据库中,方便日后能够用到,这样就可以满足人们的所有的需求。

②系统模块设计:将系统中有关联的部分组合在一起,构成具有特定功能的子系统。划分模块的内部组成具有较强的耦合性,模块本身具有一定的通用性。不同的模块间可以进行相互组合与依赖。系统的客户端浏览器采用Html、CSS和Vue的技术实现,浏览器端发送Http请求和接受Http响应;Web服务器技术包括Java语言、Springboot框架和MyBatis框架;数据库采用MySQL存储系统的数据,与服务器进行数据交互。

③数据库设计:数据库实施阶段,采用MySQL数据库三范式设计表,根据逻辑设计和物理设计的结果建立数据库,编写和调试应用程序,组织数据入库,并进行运行调试。

④页面设计:采用动静分离技术和响应式布局设计,前后端分离技术。

技术栈

后端框架SpringBoot

Spring Boot是一个开源的Java后端框架,它简化了基于Spring的应用程序的初始搭建和配置过程。Spring Boot通过提供外部化配置、自动配置和约定优于配置的原则,使开发者能够快速地构建独立、可运行的、生产级别的Spring应用程序。

Spring Boot具有以下特点和优势:

1、简化开发:Spring Boot通过提供自动配置功能,减少了开发者的配置工作量。它还提供了大量的开箱即用的功能模块,如Web开发、数据访问、缓存、安全等。

2、微服务架构支持:Spring Boot适用于构建微服务架构。它提供了内嵌的Servlet容器,可以方便地将应用程序打包成可执行的JAR文件,并通过命令行或脚本启动。

3、外部化配置:Spring Boot支持外部化配置,可以将应用程序的配置信息放在外部文件中,如属性文件、YAML文件等。这使得在不重新打包和部署应用程序的情况下,可以动态调整配置。

4、自动化配置:Spring Boot根据应用程序的依赖和配置自动化地配置各种功能模块。开发者只需要添加相应的依赖,即可获取默认的配置和功能。

5、约定优于配置:Spring Boot通过约定优于配置的原则,提供了默认的配置和行为。开发者只需要在特定的目录结构下编写代码和资源文件,即可获得预期的功能。

6、强大的生态系统:Spring Boot基于Spring框架,拥有强大的生态系统。开发者可以直接使用Spring提供的丰富的功能和工具,如依赖注入、AOP、数据访问等。

总的来说,Spring Boot是一个简化和加速Java后端开发的框架,它通过提供自动配置、外部化配置和约定优于配置的原则,使开发者能够更快地构建独立、可运行的Spring应用程序,并适用于微服务架构。它还拥有强大的生态系统,提供了丰富的功能模块和工具。

数据库mysql

MySQL是一种开源的关系型数据库管理系统,它是目前最流行的数据库之一。MySQL由瑞典MySQL AB公司开发,并由Oracle公司维护和支持。MySQL具有许多优点,包括高可靠性、性能强大、可扩展性好、易于使用以及广泛的应用领域。

MySQL的特点有以下几个方面:

1、关系性数据模型:MySQL采用了关系型数据库模型,数据以表的形式组织存储,表之间通过键进行关联。

2、支持SQL语言:MySQL支持SQL(Structured Query Language)语言,可以使用SQL语句来操作数据库,包括创建、查询、更新和删除数据。

3、多用户多线程:MySQL支持多用户和多线程的并发操作,多个用户可以同时访问数据库,提高了系统的性能和并发能力。

4、安全性:MySQL提供了许多安全特性,包括密码加密、用户权限管理、访问控制等,保障了数据的安全性。

5、高性能:MySQL采用了多种优化技术来提高数据库的性能,包括索引、缓存、预编译等,可以在处理大量数据时保持较高的查询速度。

6、可扩展性:MySQL具有良好的可扩展性,在需要处理更大数据量时,可以通过分布式架构来扩展系统的容量和性能。

7、跨平台支持:MySQL可以运行在多种操作系统上,包括Linux、Windows、Mac等,提供了对不同平台的广泛支持。

MySQL被广泛应用于各种类型的应用程序和网站,包括电子商务、社交媒体、金融服务、日志分析等。它具有强大的功能和灵活的配置选项,可以满足不同应用场景的需求。同时,MySQL还提供了丰富的开发工具和管理工具,简化了数据库的开发和管理过程。

前端框架Vue

Vue是一款优秀的前端框架,用于构建交互式的用户界面。它采用了组件化的思想,使开发者能够更高效地构建可重用的UI组件,并且能够轻松地管理组件之间的交互。

Vue具有以下几个主要特点:

1、简洁易用:Vue的设计非常简洁,使用起来非常容易上手。它提供了一套简洁的API,使开发者能够快速构建出功能丰富的应用。

2、响应式:Vue支持数据的双向绑定,当数据发生变化时,页面会自动更新。这使得开发者能够更容易地处理数据的变化,并且能够保持页面与数据的同步。

3、组件化:Vue采用组件化的思想,将界面拆分为多个独立的组件,每个组件都有自己的状态和逻辑。这样的设计使得代码更加模块化,并且能够提高代码的复用性。

4、虚拟DOM:Vue使用虚拟DOM来高效地更新页面。在数据发生变化时,Vue会通过对比虚拟DOM的差异,最小化地更新页面。这样的设计使得页面的更新更加高效。

5、插件化:Vue的核心库只关注于视图层的渲染,而其它功能,如路由、状态管理等,则通过插件的方式来扩展。这使得Vue的功能非常灵活,能够根据项目的需求进行自由的组合。

总的来说,Vue是一款功能强大、灵活易用的前端框架。它具有简洁易用的API、响应式的数据绑定、组件化的开发模式以及高效的虚拟DOM更新机制等特点。无论是构建大型应用还是快速原型开发,Vue都能够提供良好的支持。

持久层框架MyBaitsPlus

MyBatis Plus是一款基于MyBatis的持久层框架,它通过提供更加便捷、高效的开发方式,简化了与数据库的交互操作。MyBatis Plus在原生的MyBatis基础上进行了功能扩展和性能优化,提供了一系列强大的特性和工具,大大简化了数据库操作的编写和维护工作。

MyBatis Plus具有诸多优点和特性,包括简化的CRUD操作、代码自动生成、分页查询、多租户支持、逻辑删除、乐观锁、动态SQL等。它还提供了一套强大的查询构建器,可以通过链式调用的方式灵活构建复杂的查询条件,并且支持Lambda表达式来编写类型安全的查询语句。

另外,MyBatis Plus还支持自定义插件扩展,可以对框架进行灵活的功能定制和扩展。它与Spring Boot、Spring Cloud等主流框架无缝集成,能够进一步简化开发工作,并且保持了与原生MyBatis的兼容性,可以直接使用原生的MyBatis代码和配置。

总之,MyBatis Plus是一个功能强大、易于使用的持久层框架,能够极大地提高开发效率和代码质量,是Java开发者进行数据库操作的优秀选择。

具体功能模块设计

  • 登录注册
    用户必须先注册系统才能登录。注册完成后,在登录页面输入用户名和密码。系统验证信息正确后,用户能够成功登录,并进行其他操作

在这里插入图片描述

  • 用户管理

用户管理模块的最主要功能是对用户账户进行管理,包括增加、删除、修改和查询用户信息。每个用户账户都包含必要的访问权限、个人信息、和角色。管理员负责监督这些账户,确保只有经授权的个体能够访问特定的功能和信息。这个系统有助于高效管理用户数据,并加强组织内的安全协议。

在这里插入图片描述

系统需求分析

经过深入的审视,我们认识到在软件开发的整个过程中,系统分析占据着核心的地位。然而,尽管其重要性不言而喻,系统分析在很多情况下仍然未能得到应有的重视或正确的理解。需求分析作为软件开发周期中的关键环节,它不仅确立了软件产品构建的基本结构和支撑系统,而且对于提升开发效率和保证软件质量具有至关重要的作用。许多软件问题的发生都可以追溯到需求分析阶段的疏漏,这是因为需求分析深入挖掘并精确界定了用户的商业需求,确保了软件开发的目标与用户的实际情况和需求保持一致。

可行性分析

可行性分析是一种系统性的全面评估手段,它通过综合考量项目的关键因素和条件,例如市场需求、资源可用性、环境影响、资金筹集潜力以及盈利可能性等,来预测项目实施后的财务效益、经济回报以及其对社会和环境的潜在影响。此类分析工作为项目的决策提供了科学的依据。
可行性研究报告的优劣直接关系到投资的成效,而报告的编制过程对于其最终的应用效果具有决定性的作用。因此,认识到可行性研究的重要性,并持续提升报告的编写水平是至关重要的。在执行可行性分析的过程中,报告应当体现出前瞻性、客观性、可信度以及科学性等关键属性。

  • 技术可行性分析

选用Spring Boot、Vue和MySQL的技术栈可视为成本效益高的选择,因Spring Boot作为一款开源的Java企业级应用开发框架,通过提供大量自动配置的功能,显著减少了开发初期的配置需求,加速了项目的启动及交付过程,同时支持微服务架构,提高了系统的可扩展性与可维护性[4]。Vue.js作为前端开发领域中的轻量级框架,以其易于学习和使用的特性受到开发者的青睐,其专注于视图层的设计理念加快了交互式用户界面的构建速度,降低了前端开发的复杂度和相关培训成本,组件化的架构进一步提升了代码的重用性,有效节约了开发资源。对于后端数据管理,选用MySQL这一成熟的开源关系数据库管理系统,它不仅能处理大规模数据操作,还保证了数据处理的高效性和安全性,避免了高昂的商业数据库许可费用,广泛的社区支持与丰富的在线资源则有助于快速解决开发过程中遇到的问题,从而降低了整体的运营成本。因此,这一技术组合不仅满足了管理系统开发的基本需求,还确保了项目从开发到运营的全周期成本控制,显著提升了投资回报率。

  • 经济可行性分析

本系统的设计与实现核心集中于一个基于Spring Boot的网站,其开发依赖于Eclipse这一软件资源,该平台提供的免费版本已足以满足开发与使用需求。利用MySQL数据库,一个开源且免费的数据库系统,确保了数据存储的高效与稳定,而服务器端选用的Tomcat服务器提供了可靠的网络服务支持,浏览器端的日常IE浏览器兼容性考量进一步保障了用户访问的便捷性。Spring Boot框架的开源特性大大降低了开发成本,加速了开发进程。

  • 操作可行性

从操作的角度来看,该系统设计了直观的用户界面,可确保用户易于理解和使用。通过分层的权限设计,不同角色可以访问不同级别的操作界面,简化了操作过程,并提高了用户体验。系统中的导航菜单和功能模块的设计考虑了用户习惯,使得无论是信息管理,用户和管理员都可以快速熟悉和掌握系统的使用。系统预计会包括详细的帮助文档和易于访问的用户支持,以进一步提升操作的可行性。

经由可行性评估,上述软件资源的支出完全符合经济可行性要求,显示了项目在资源配置方面的高度经济效益。在硬件配置方面,选择配备齐全的笔记本电脑作为开发工具,在保证了开发效率的同时,也在经济上展现了可行性,为项目的顺利实施提供了坚实的物质基础。此种配置方案,不仅体现了对经济性的严格考量,也确保了系统开发与实施过程的高效率与高质量,为达成项目目标奠定了坚实基础。

系统测试

软件测试的核心目标是确保产品无缺陷并满足既定的设计规格要求。这一过程主要旨在验证系统是否达到预定的标准,并全面检验系统的功能需求是否得到满足[15]。通过将功能性测试与非功能性测试用例进行对比分析,测试过程能够揭示软件存在的缺陷和潜在的改进空间。软件的可靠性设计是一个涉及多个学科领域的复杂工程项目,它带来了诸多挑战。在测试周期内,功能性测试作为黑盒测试的关键组成部分,专注于评估用户需求的实现情况,而不是直接检验代码层面的细节。

- 系统测试的目的

系统测试旨在全面评估产品或服务的功能,以确保它们在预定的操作环境中表现良好,满足既定的开发标准,并能在规定的时间内对各种输入做出响应。这类测试不仅向用户展示了产品或服务的质量水平,同时也为运营者提供了一份客观且独立的评估报告,揭示了存在的潜在缺陷。系统测试涵盖了对软件或系统组件的实际运行情况的检测,目的是确认其准确性、用户友好性以及性能等关键特性。这些特性的验证确保了被测试对象能够在设计阶段所设定的标准上满足用户的期望。通过系统测试,可以有效地识别出功能上的缺陷,确保系统的稳定性和可靠性。

- 系统功能测试

在系统的功能性测试阶段,开发人员需遵循详尽的操作指南,对网站软件的综合功能进行全面的检验,确保每一项功能的实施均能达到预定的性能标准。此过程中,开发团队将对软件系统内各项功能执行严格的测试,通过对MySQL数据库中数据的增删改查操作来验证各功能模块的正确性与效率。这一步骤不仅是评估软件系统开发成果是否符合项目目标的关键,也是确保软件能够在实际运营中稳定高效服务用户的必要前提。

随着测试过程的深入,开发人员将准确记录测试期间每个功能运行的详细数据,包括但不限于数据处理速度、用户界面响应时间以及操作的准确性等关键指标。这些数据将作为判定软件系统功能是否达到预期结果的依据,为后续的优化与调整提供科学、精准的参考。通过这一系统而细致的测试流程,项目团队能够及时发现并解决系统中存在的任何缺陷或不足,从而确保最终交付的网站在功能上不仅全面覆盖用户需求,同时在性能上也能满足高效、稳定运行的要求,最终实现提供优质用户体验的目标。

- 登录注册功能测试

用户注册登录功能模块在网站的软件测试中占据重要地位。为确保用户初次进入软件系统时能够顺利使用注册后登录的功能,这一环节需进行细致的测试。表详细列出了具体的测试步骤。

序号测试功能操作步骤预期效果实际效果结果验证
1用户注册用户名test,密码Aa123456,个人信息填写正确注册成功注册成功通过
2用户注册用户名为空,密码Aa123456,个人信息填写正确注册失败,用户名必填注册失败通过
3用户注册用户名为test2,密码为空,个人信息填写正确注册失败,密码必填注册失败通过
4用户注册用户名为test3,密码为Aa123456,个人信息填写错误注册失败,信息填写错误注册失败通过
5用户登录用户名test,密码Aa123456登录成功,进入主页面注册登录成功,进入主页面通过
6用户注册用户名为空,密码Aa123456登录失败,用户名必填登录失败通过
7用户注册用户名为test2,密码为空登录失败,密码必填登录失败通过

- 用户管理功能测试

系统的管理层可在此模块进行以下操作:对用户基础信息的修改;对用户的登录密码进行重置;删除用户;新增用户;根据关键词进行检索。以用户名:test为例对该功能进行测试。

序号测试功能操作步骤预期效果实际效果结果验证
1用户添加用户名test,密码Aa123456,个人信息填写正确添加成功添加成功通过
2用户添加用户名test,密码Aa123456,个人信息填写正确添加失败,提示用户存在添加失败通过
3用户添加用户名为test2,密码为空,个人信息填写正确添加失败,密码必填添加失败通过
4用户编辑用户名为test,个人信息填写错误编辑失败编辑失败,数据库修改正确通过
5用户删除用户名test删除成功删除成功,数据库数据不存在通过

- 结论

本系统主要使用单元测试,集成测试,和系统测试,同时还采用了黑盒测试等一些方法,通过模拟用户使用系统实现各个功能编写测试用例,并进行测试。
1、系统的功能完整性得到了验证。我们对系统的各个模块进行了全面的功能测试,包括但不限于用户管理、数据处理、数据存储等功能。通过测试,我们确认系统的各个功能模块都能正常运行,并且能够按照预期的方式执行相应的操作。

2、系统的性能表现良好。我们对系统进行了性能测试,包括对系统的响应时间、并发处理能力、负载能力等方面进行了测试。通过性能测试,我们确认系统能够在合理的时间内响应用户请求,并且在面对高并发的情况下依然能够保持良好的表现。

3、系统的安全性得到了保障。我们对系统的安全性进行了测试,包括对用户身份验证、数据加密、权限控制等方面进行了测试。通过安全性测试,我们确认系统能够有效地保护用户的隐私信息,并且只有具备相应权限的用户才能访问系统中的敏感数据。

4、系统的稳定性得到了验证。我们对系统进行了稳定性测试,模拟了各种异常情况,并观察系统的行为。通过稳定性测试,我们确认系统能够正确地处理各种异常情况,并且不会因为异常情况导致系统崩溃或者数据丢失。

综上所述,基于SpringBoot的系统在经过我们的全面测试后表现出色,具备完整的功能、良好的性能和稳定性,同时也能够保证用户的安全性。我们相信这个系统可以满足用户的需求,并且能够在实际生产环境中稳定运行。

为什么我?

关于我

我就是程序员,程序大部分由博主开发完成,现在有很多人看似在做程序设计,但是并不会进行讲解,因为程序根本不是他做出来的,从我这里做的毕设,都可以享有代码讲解服务,会议博主亲自讲解,可以全程录音录屏!这就是我的保障,代码哪里不懂都可以问!!!

在这里插入图片描述

项目开发案例

专注于开发已经很多年,也有很多的相关的项目经验了已经,下面是一些之前给客户做的一些定制的部分项目案例,可以参考一下:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

我自己的网站

在这里插入图片描述

网站均为博主自己开发,质量都可以得到保障,大家有任何技术问题或是网站上线的问题可以随时联系我,免费为大家解答!文章最下面如何找到我,获取完整源码和数据库,没有套路,没有套路,没有套路!!!

源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻👇🏻👇🏻获取联系方式👇🏻👇🏻👇🏻

### 构建基于Hadoop新能源汽车市场行情分析系统 #### 系统架构概述 为了有效构建一个针对新能源汽车市场的行情分析系统,采用Hadoop生态系统作为基础框架可以极大提升数据处理效率和扩展能力。此系统不仅能够高效管理海量销售数据,还能通过集成Spark、Hive等组件实现复杂的数据挖掘实时分析功能[^1]。 #### 数据采集预处理 首先需要开发专门用于抓取网络上公开发布的各类有关于电动汽车资讯的应用程序——即所谓的“爬虫”。这些应用程序会定期访问指定网站并下载最新的产品介绍页面或官方公告文档等内容资源。之后再经过清洗转换成统一格式存入到分布式文件系统(HDFS)当中等待后续操作。 #### 存储层设计 所获取的信息会被分割成多个部分分别保存至不同的节点之上形成冗余副本以防止单点故障造成不可逆损失的同时也便于日后快速检索调阅任意时段内的历史记录。此外还可以考虑引入NoSQL数据库如Cassandra来辅助存储结构化程度较低但又具有一定关联性的元数据信息以便更灵活地应对多样化的查询需求。 #### 大数据分析平台搭建 当原始资料已经妥善安置完毕后就可以着手准备建设一套完整的ETL(Extract Transform Load)流水线流程了。这里建议选用Apache Spark Streaming配合Kafka消息队列共同完成近似即时的消息传递任务;而对于离线批处理作业而言则继续沿用MapReduce编程模型即可满足性能指标要求。此同时借助于Hive所提供的类SQL接口使得分析师们无需掌握复杂的命令行语法就能轻松编写脚本开展探索性研究工作[^2]。 ```sql CREATE TABLE IF NOT EXISTS sales_data ( sale_date DATE, brand STRING, model STRING, city STRING, price DOUBLE ); INSERT INTO sales_data VALUES ('2023-09-01', 'BrandA', 'ModelX', 'CityY', 30000.5), ...; ``` #### 可视化展示方案 最后一步便是要让最终成果以直观易懂的形式呈现给目标受众群体面前。为此可创建Web应用界面并通过ECharts库绘制图表图形(例如柱状图显示重复车辆信息、折线图表示每日新增数量变化趋势以及饼图概括总体构成比例)。同时确保整个交互过程流畅自然并且具备良好的用户体验特性[^3]。 ```html <!-- HTML snippet for ECharts --> <div id="main" style="width: 600px;height:400px;"></div> <script type="text/javascript"> var myChart = echarts.init(document.getElementById('main')); option = { xAxis: {type: 'category'}, yAxis: {type: 'value'}, series: [{data:[], type:'bar'}] }; myChart.setOption(option); </script> ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值