mysql事务

使用事务
  • 在保存订单数据时,涉及到多张表(商品表、订单表、订单详情表)据的修改应该是一个整体事务,即要么一起成功,要么一起失败。

  • mysql中事务的使用

    begin  # 开启事务
    rollback # 回滚事务
    commit  # 提交事务
    
  • Django中事务的使用

    • with语句用法

      from django.db import transaction
      
      def viewfunc(request):
        # 这部分代码不在事务中,会被Django自动提交
        ......
      
        with transaction.atomic():
            # 创建保存点
            save_id = transaction.savepoint()
            # 这部分代码会在事务中执行
            ......
            # 回滚到保存点
            transaction.savepoint_rollback(save_id)
            ......
            # 提交从保存点到当前状态的所有数据库事务操作
            transaction.savepoint_commit(save_id)
      
使用乐观锁并发下单
  • 在多个用户同时发起对同一个商品的下单请求时,先查询商品库存,再修改商品库存,会出现资源竞争问题,导致库存的最终结果出现异常。

  • 解决办法:

    • 悲观锁:

      • 当查询某条记录时,即让数据库为该记录加锁,锁住记录后别人无法操作,使用类似如下语法

        # 满足的条件
        # 1、必须在事务中使用
        # 2、select 后面加 for update
        select stock from sp_goods where id=1 for update;
        
        Goods.objects.select_for_update().get(id=1)
        
      • 悲观锁类似于我们在多线程资源竞争时添加的互斥锁,容易出现死锁现象,采用不多。

      • 比如用户A给表A加了锁,然后查询表B。用户B给表B加了锁,然后查询表A。两个人同时等待对方操作完后,解除锁。这样就产生了死锁

  • 乐观锁:

    • 乐观锁并不是真实存在的锁,而是在更新的时候判断此时的库存是否是之前查询出的库存,如果相同,表示没人修改,可以更新库存,否则表示别人抢过资源,不再执行库存更新。类似如下操作

      update sp_goods set stock=10 where id=1 and stock=20;
      
      Goods.objects.filter(id=1, stock=20).update(stock=10)
      
    • 操作条件:

      • 库存大于购买量,
      • 更新库存和销量时原始库存没变。
MySQL事务隔离级别
  • 事务隔离级别指的是在处理同一个数据的多个事务中,一个事务修改数据后,其他事务何时能看到修改后的结果。

  • MySQL数据库事务隔离级别主要有四种:

    • Serializable:串行化,一个事务一个事务的执行。
    • Repeatable read:可重复读,无论其他事务是否修改并提交了数据,在这个事务中看到的数据值始终不受其他事务影响。
    • Read committed:读取已提交,其他事务提交了对数据的修改后,本事务就能读取到修改后的数据值。
    • Read uncommitted:读取未提交,其他事务只要修改了数据,即使未提交,本事务也能看到修改后的数据值。
    • MySQL数据库默认使用可重复读( Repeatable read)。
  • linux修改方式:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AGDeQRTW-1570792377339)(/Users/apple/qianfeng/授课/sz1903/day06/资料/day06.assets/image-20190901182631928.png)]

  • mac修改方式

    serializable 串行化
    repeatable read 可重复读
    read committed 读取已提交
    read uncommitted 读取未提交
    
    # 修改全局事务隔离级别
    set global transaction isolation level read committed;
    
    # 查看隔离级别
    select @@global.transaction_isolation;
    
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值