文章目录
第一章:项目概览
1.1 项目介绍与应用场景
本项目旨在通过 LangChain 框架构建一个多智能体对话模拟系统,其中多个代理可以进行结构化对话,并利用搜索、计算等外部工具支持更复杂的交互。这种系统可广泛应用于:
- 智能辩论与对话训练(如学术讨论模拟)
- 任务协作型 AI 代理系统(如团队决策模拟)
- 多角色对话游戏与虚拟世界构建
通过本教程,您将掌握如何:
- 构建可会话的 DialogueAgent 类;
- 实现一个支持轮转控制的 DialogueSimulator;
- 集成搜索等外部工具;
- 组织和执行一场可控的多方辩论模拟。
1.2 多智能体系统概述
在本项目中,我们采用中央协调式多智能体架构:
- Moderator Agent(主持代理):掌控全局,分配发言顺序;
- Participant Agents(参与者代理):根据主持人的指令参与讨论;
- 工具调用能力:代理可在对话中调用工具完成搜索、查询、计算等任务。
这种结构具有良好的可控性和扩展性,适合教学与实验。
1.3 环境配置
详见博客Prompt工程之LangChain 1)初识 LangChain
1.4 Tavily Search 工具配置指南
本教程将演示如何为代理集成 Tavily 搜索工具,它能在互联网上快速返回搜索摘要。
步骤如下:
- 访问 Tavily 官网 注册并获取 API Key;
- 将该 Key 填入上述配置;
- 稍后我们将在第 3 章介绍如何将其作为 LangChain 工具集成到代理中。
1.5 小贴士:避免常见环境配置错误
- ✅ 确保 Python ≥ 3.9;
- ✅ 若在 Jupyter 中安装包,请加上
!
或%pip
前缀; - ✅
.env
文件需纯文本 UTF-8 格式; - ❌ 不要在 public 仓库中泄露 API 密钥;
- ✅ 每次重启内核后需重新设置环境变量或重新加载
.env
。
1.6 练习区:完成本地开发环境搭建
🎯 目标:成功运行一段代码,调用 ChatOpenAI 并返回一句话响应。
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
model = ChatOpenAI()
response = model([HumanMessage(content="你好!今天的天气怎么样?")])
print(response.content)
💬 练习扩展:
- 修改提示语为英文或更复杂的问题;
- 尝试在不使用
.env
的情况下设置 Key;