Prompt工程之LangChain实战:多智能体辩论系统(1)

第一章:项目概览

1.1 项目介绍与应用场景

本项目旨在通过 LangChain 框架构建一个多智能体对话模拟系统,其中多个代理可以进行结构化对话,并利用搜索、计算等外部工具支持更复杂的交互。这种系统可广泛应用于:

  • 智能辩论与对话训练(如学术讨论模拟)
  • 任务协作型 AI 代理系统(如团队决策模拟)
  • 多角色对话游戏与虚拟世界构建

通过本教程,您将掌握如何:

  • 构建可会话的 DialogueAgent 类;
  • 实现一个支持轮转控制的 DialogueSimulator;
  • 集成搜索等外部工具;
  • 组织和执行一场可控的多方辩论模拟。

1.2 多智能体系统概述

在本项目中,我们采用中央协调式多智能体架构

  • Moderator Agent(主持代理):掌控全局,分配发言顺序;
  • Participant Agents(参与者代理):根据主持人的指令参与讨论;
  • 工具调用能力:代理可在对话中调用工具完成搜索、查询、计算等任务。

这种结构具有良好的可控性和扩展性,适合教学与实验。


1.3 环境配置

详见博客Prompt工程之LangChain 1)初识 LangChain


1.4 Tavily Search 工具配置指南

本教程将演示如何为代理集成 Tavily 搜索工具,它能在互联网上快速返回搜索摘要。

步骤如下:

  1. 访问 Tavily 官网 注册并获取 API Key;
  2. 将该 Key 填入上述配置;
  3. 稍后我们将在第 3 章介绍如何将其作为 LangChain 工具集成到代理中。

1.5 小贴士:避免常见环境配置错误

  • 确保 Python ≥ 3.9
  • ✅ 若在 Jupyter 中安装包,请加上 !%pip 前缀;
  • .env 文件需纯文本 UTF-8 格式;
  • ❌ 不要在 public 仓库中泄露 API 密钥;
  • ✅ 每次重启内核后需重新设置环境变量或重新加载 .env

1.6 练习区:完成本地开发环境搭建

🎯 目标:成功运行一段代码,调用 ChatOpenAI 并返回一句话响应。

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage

model = ChatOpenAI()
response = model([HumanMessage(content="你好!今天的天气怎么样?")])
print(response.content)

💬 练习扩展

  • 修改提示语为英文或更复杂的问题;
  • 尝试在不使用 .env 的情况下设置 Key;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值