Prompt工程论文:结构化对话,分层行动- LLM 多智能体系统的协作框架

论文地址:https://arxiv.org/pdf/2502.11098?

摘要:近期,基于大语言模型的多智能体系统(LLM-MA)取得了令人瞩目的进展,但在智能体协作完成复杂任务时,通信与优化仍面临诸多挑战。本文提出了一种新颖的框架——Talk Structurally, Act Hierarchically(简称 TalkHier),该框架引入了结构化通信协议以实现更具上下文感知的交流,同时通过分层优化机制应对输出错误、虚假信息与偏见等问题。
在多种任务中,TalkHier 的表现超越了多个类型的当前最先进方法(SoTA),包括推理扩展模型(如 OpenAI-o1)、开源多智能体模型(如 AgentVerse)、以及在现有大语言模型和单智能体基线(如 ReAct、GPT-4o)上的多数投票策略。这些任务涵盖了开放领域问答、特定领域选择性提问以及实用广告文案生成等。
这些成果表明,TalkHier 有望为 LLM-MA 系统树立新的标杆,推动多智能体框架向更高效、更具适应性和协作性的方向发展。
项目代码已开源,详见:https://github.com/sony/talkhier。

研究背景

  1. 研究问题:本文提出了一种新的多智能体系统框架,称为TalkHier(Talk Structurally, Act Hierarchically),旨在解决当前大型语言模型(LLM)多智能体系统(LLM-MA)在协作任务中面临的通信和优化难题。现有的LLM-MA系统在处理复杂任务时,通常存在通信不畅、信息冗余和反馈处理不均衡等问题,导致输出结果不准确或存在偏见。
  2. 关键论点
    • TalkHier通过引入结构化的通信协议,确保信息交流的清晰和准确。
    • 该框架采用分层优化的方法,使得多智能体能够有效地进行协作和反馈总结,从而提高整体系统的性能。
    • 实验结果表明,TalkHier在多个基准测试中均超越了现有的最先进技术,展现出其在复杂任务中的有效性和适应性。

研究方法

如图所示,我们提出的 TalkHier 框架在第一行引入了一种全新的通信协议,具有丰富上下文和良好结构化的通信信息;在第二行则引入了协作式的分层优化机制,在 LLM 多智能体框架下通过评估生成汇总且协调一致的反馈信息。
在这里插入图片描述

现有方法(左)与我们方法(右)的对比

结果与分析

实验结果显示,TalkHier在多个基准测试中均表现出色:

  1. MMLU基准测试:TalkHier在MMLU测试中的平均准确率为88.38%,超越了AgentVerse(83.66%)和ReAct(67.19%)等基线模型,显示了其分层优化的有效性。
    在这里插入图片描述

  2. WikiQA评估:在WikiQA数据集上,TalkHier的ROUGE-1分数为0.3461,BERTScore为0.6079,均高于其他基线模型,表明其在开放域问答任务中的优势。

    消融实验

总体结论

本文提出的TalkHier框架通过引入结构化的通信协议和分层优化机制,显著提高了多智能体系统在复杂任务中的表现。实验结果表明,TalkHier在多个基准测试中超越了现有的最先进技术,展现出其在未来多智能体协作中的广泛应用潜力。未来的研究可以进一步探索其在不同领域中的适用性和优化策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值