Prompt实战之多文档总结 1)总览

Prompt实战之多文档总结 1)总览

1.1 引言

在当今信息爆炸的时代,如何高效地从大量文档(如 PDF、Notion 页面、客户提问等)中提取关键信息成为一项核心挑战。大型语言模型(LLMs)以其卓越的文本理解与综合能力,为这一任务提供了强大的支持。

在检索增强生成(Retrieval-Augmented Generation, 简称 RAG)体系中,文档总结不仅可以压缩大量检索到的资料,还能为 LLM 提供更简洁、精准的上下文,从而提升回答质量和效率。

本书将带领你通过实际操作,掌握如何使用 LLM 来高效地总结多份文档内容。


1.2 本章目标

  • 理解文档总结在 LLM 应用中的重要性;
  • 了解两种主要的文档总结策略(Stuff 与 Map-Reduce);
  • 熟悉所需的基本工具和环境设置;
  • 为后续章节的实践打下基础。

1.3 关键概念

在本书中,我们将重点介绍以下核心概念:

  • 使用语言模型:调用 LLM 来理解并压缩大量文本内容。
  • 使用文档加载器:通过 WebBaseLoader 等工具,从网页、PDF 或其他来源读取原始文档。
  • 文档总结策略
    • Stuff(堆叠):将所有文档拼接成一个大提示词(prompt)传入模型;
    • Map-Reduce(映射-归约):先逐份总结,再统一汇总,适用于大型文档集合。

此外,我们还将介绍更高级的技巧,如流式输出(Streaming)迭代细化(Iterative Refinement),以应对更复杂的实际场景。


1.4 环境与工具准备

为了顺利完成本书的示范和练习,请提前准备好以下环境与工具:

1.4.1 Jupyter Notebook

本书默认使用 Jupyter Notebook 作为交互式实验环境。它可以帮助我们逐步调试代码、观察模型行为,尤其在处理 LLM 这样复杂系统时极为重要。

▶️ 提示:若未安装,请参考官方文档或运行如下命令:

pip install notebook

1.4.2 安装必要库

请确保安装以下主要依赖:

pip install langchain langgraph beautifulsoup4 langchain-community
pip install "langchain[openai]"

如需更新至最新版,可添加 --upgrade 参数。

1.4.3 配置 API 密钥

大部分示范使用 OpenAI 的模型,需设置环境变量:

export OPENAI_API_KEY="your-openai-api-key"

在 Notebook 中,也可以动态设置:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API Key: ")

1.5 为什么选择 LangChain 与 LangGraph?

  • LangChain 提供了丰富的链式调用与文档处理组件,适合快速搭建总结流程。
  • LangGraph 则允许我们以图(Graph)结构灵活编排多步处理过程,支持错误恢复、流式输出等高级功能。

这种组合使得即便面对数百份文档,我们也可以:

  • 按需并行处理;
  • 动态调整策略;
  • 保证最终总结不超出 LLM 的上下文窗口限制。

1.6 本章小结

本章中,我们了解了文档总结的重要性,掌握了即将使用的基本工具与环境配置,为后续具体操作(Stuff 总结、Map-Reduce 流程)做好了准备。

在下一章,我们将从最基础的方法出发,实践如何一次性总结多份小文档(Stuff 策略)


✏️ 练习

  1. 在你的本地环境中搭建好 Jupyter Notebook 并成功运行一个简单的 Python 脚本。
  2. 安装 langchainlanggraph,并测试能否正确导入它们。
  3. 注册一个 OpenAI API Key,并在 Notebook 中成功加载至环境变量中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值