文章目录
Prompt实战之多文档总结 1)总览
1.1 引言
在当今信息爆炸的时代,如何高效地从大量文档(如 PDF、Notion 页面、客户提问等)中提取关键信息成为一项核心挑战。大型语言模型(LLMs)以其卓越的文本理解与综合能力,为这一任务提供了强大的支持。
在检索增强生成(Retrieval-Augmented Generation, 简称 RAG)体系中,文档总结不仅可以压缩大量检索到的资料,还能为 LLM 提供更简洁、精准的上下文,从而提升回答质量和效率。
本书将带领你通过实际操作,掌握如何使用 LLM 来高效地总结多份文档内容。
1.2 本章目标
- 理解文档总结在 LLM 应用中的重要性;
- 了解两种主要的文档总结策略(Stuff 与 Map-Reduce);
- 熟悉所需的基本工具和环境设置;
- 为后续章节的实践打下基础。
1.3 关键概念
在本书中,我们将重点介绍以下核心概念:
- 使用语言模型:调用 LLM 来理解并压缩大量文本内容。
- 使用文档加载器:通过
WebBaseLoader
等工具,从网页、PDF 或其他来源读取原始文档。 - 文档总结策略:
- Stuff(堆叠):将所有文档拼接成一个大提示词(prompt)传入模型;
- Map-Reduce(映射-归约):先逐份总结,再统一汇总,适用于大型文档集合。
此外,我们还将介绍更高级的技巧,如流式输出(Streaming)和迭代细化(Iterative Refinement),以应对更复杂的实际场景。
1.4 环境与工具准备
为了顺利完成本书的示范和练习,请提前准备好以下环境与工具:
1.4.1 Jupyter Notebook
本书默认使用 Jupyter Notebook 作为交互式实验环境。它可以帮助我们逐步调试代码、观察模型行为,尤其在处理 LLM 这样复杂系统时极为重要。
▶️ 提示:若未安装,请参考官方文档或运行如下命令:
pip install notebook
1.4.2 安装必要库
请确保安装以下主要依赖:
pip install langchain langgraph beautifulsoup4 langchain-community
pip install "langchain[openai]"
如需更新至最新版,可添加 --upgrade
参数。
1.4.3 配置 API 密钥
大部分示范使用 OpenAI 的模型,需设置环境变量:
export OPENAI_API_KEY="your-openai-api-key"
在 Notebook 中,也可以动态设置:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API Key: ")
1.5 为什么选择 LangChain 与 LangGraph?
- LangChain 提供了丰富的链式调用与文档处理组件,适合快速搭建总结流程。
- LangGraph 则允许我们以图(Graph)结构灵活编排多步处理过程,支持错误恢复、流式输出等高级功能。
这种组合使得即便面对数百份文档,我们也可以:
- 按需并行处理;
- 动态调整策略;
- 保证最终总结不超出 LLM 的上下文窗口限制。
1.6 本章小结
本章中,我们了解了文档总结的重要性,掌握了即将使用的基本工具与环境配置,为后续具体操作(Stuff 总结、Map-Reduce 流程)做好了准备。
在下一章,我们将从最基础的方法出发,实践如何一次性总结多份小文档(Stuff 策略)。
✏️ 练习
- 在你的本地环境中搭建好 Jupyter Notebook 并成功运行一个简单的 Python 脚本。
- 安装
langchain
与langgraph
,并测试能否正确导入它们。 - 注册一个 OpenAI API Key,并在 Notebook 中成功加载至环境变量中。