符号表
集合
- 设A,B两个集合有一种一一对应的关系ψ:A→B , 则称A,B等势记做:A~B 。
如果A=B , 则A~B,反之不成立。 - 凡与自然集合N等势的集合称之为可数集合 , 该集合的基数记为
(阿列夫零)
- 开区间(0,1)称为不可数集合, 凡与开区间等势的集合称为不可数集合,称为阿列夫。
命题
-
一切没有判断内容的句子都不能作为命题,命题应该是一个陈述语句
-
设p为任意命题,非p称为p的否定式,记为﹁p。
-
p∧q 含义为 “p并且q”或“p与q” ; p∨q 含义为“p或q”,均为假才为假。
-
∧∨⊕ 相当于 or , and ,xor
-
-
p↔q 为 p与q 的等价式。q , p相同才为真。
-
所有连接词的优先级为:否定,合取,析取 , 蕴涵,等价。
- 同级按从左到右 -
公式g为可满足公式, 如果它不是永假。那么g当且仅当至少有一个解释i , 使g在 i 下为真。若g为永真 , 则g一定为可满足公式,反之则不满足 。
- 永假公式(矛盾式 ,永真公式为重言式)在它所有解释下其真值都为假,也可称为不可满足公式。 -
如果p↔q ,为永真式 , 则充分必要条件是p 和q称为逻辑等价 , p≡ q 。
-
结合律 :g∨( h v s) = (g v h) v s 同 换成 ∧
- 分配律 :
g ∨( h ∧ s ) = ( g∨ h ) ∧ (g ∨ s)
g ∧ ( h ∨ s ) = (g ∧ h )∨ (g ∧ s )
- 吸收律 :
g ∨ ( g ∧ h ) = g
g ∧ ( g ∨ h ) = g
- 德摩根律 :
﹁ ( g ∨ h) = ﹁ g ∧ ﹁ h
﹁ ( g ∧ h) = ﹁ g ∨ ﹁ h
- 蕴含式 :
g → h = ﹁ g∨ h
- 假言易位
g → h = ﹁ h → ﹁ g (逆否命题 )
- 等价式
g ↔ h = ( g → h ) ∧ ( h → g ) = ( ﹁ g ∨ h)∧ ( ﹁ h ∨ g)
- 等价否定式
g ↔ h =﹁ g ↔ ﹁ h
- 归谬论
(g → h )∧ ( g → ﹁ h) = ﹁ g