-
公式G(无自由变元,或自由变元看成是常量符号)的每一个解释I由如下4个部分组成:
- 非空的个体域集合D
- G中的每个常量符号,指定D中的某个特定的元素
- G中的每个n元函数符号,指定Dn到D中的某个特定的函数。
- G中的每个n元谓词符号,指定Dn到{0,1}中的某个特定的谓词 -
如果公式G在它所有的解释下都取值为真,则称G为有效公式;都为假,则称为矛盾公式;至少有一种解释使得公式G取值为真,则称G为可满足公式。
-
如果公式G↔ H是有效公式,则称G,H称为等价,记为G = H
谓词验算中的基本等价公式 -
量词转换律:¬ (∃x)G(x)= (∀x)¬G(x)
¬ (∀x)G(x)= (∃x)¬G(x) -
量词辖域的扩张与收缩定律
(∀x) (G(x)∧S)=(∀x) G(x)∧S
(∃x) (G(x)∧S)=(∃x) G(x)∧S -
量词分配律
(∀x) (G(x)∧H(x) )=(∀x) G(x)∧(∀x) H(x) [存在也一样]
前束范式
-
如果G中的一切量词(∀x)都位于该公式的最前端(不含否定词)且这些量词的辖域(M(x1,x2…xn))都延伸到公式的末端。
- 解题步骤:①先消去公式的“→”,②再运用量词转换律,德摩根律和双重否定律,直到将所有的“¬”都内移到原子谓词公式的前端③用量词分配,改名,量词辖域的扩张与收缩律,将所有量词都提到公式最前端。
- 解题步骤:①先消去公式的“→”,②再运用量词转换律,德摩根律和双重否定律,直到将所有的“¬”都内移到原子谓词公式的前端③用量词分配,改名,量词辖域的扩张与收缩律,将所有量词都提到公式最前端。
-
推理规律:假设G(x),H(x)是只含自由变元的公式,则在全总个体域中,有(∀x)(G(x)→H(x)) ⇒ (∃x)G(x)→(∃x)H(x). (→指蕴含连接词,⇒指蕴含这种关系) ∨∧也一样
-
为了消去量词使用的规则:
- 全称特指规则(us):(∀x)G(x) ⇒ G(y),y不在G(x)中约束出现。
或(∀x)G(x) ⇒ G©,c为任意个体常量。 - 存在特指规则(es):(∃x)G(x) ⇒ G©,c为使得G©为真的特定的个体常量。当G(x)中还有除x之外的自由变元,则必须用关于这些变元的函数符号来取代c。
- 全称特指规则(us):(∀x)G(x) ⇒ G(y),y不在G(x)中约束出现。
-
添加量词
- 全称推广规则(UG):G(y) ⇒ (∀x)G(x) ,G(y)中无变元x
- 存在推广规则(EG):G© ⇒ (∃x)G(x) ,c为特定个体常量;G(y) ⇒ (∃x)G(x) ,G(y)中无变元x -
解题例子
-
在推导过程中,如既要使用规则US又要使用规则ES消去量词,而且选用的个体是同一个符号,则必须先使用规则ES ,再使用规则US。然后再使用命题演算中的推理规则,最后使用规则UG或规则EG引入量词,得到所求结论。
- 如一个变量是用规则ES消去量词,对该变量在添加量词时,则只能使用规则EG ;如使用规则US消去量词,对该变量在添加量词时,则可使用规则EG和规则UG。
- 在用规则US和规则ES消去量词时,此量词必须位于整个公式的最前端,且辖域为其后的整个公式。
- 在添加量词(Vx)和(3x)时,所选用的x不能在公式G(y)或G©中出现。