【BZOJ2671】—Calc(莫比乌斯反演)

传送门

考虑实际求
a n s = ∑ i = 1 n ∑ j = i + 1 n [ i + j ∣ i ∗ j ] ans=\sum_{i=1}^{n}\sum_{j=i+1}^n[i+j|i*j] ans=i=1nj=i+1n[i+jij]

d = g c d ( i , j ) , i = i ′ d , j = j ′ d d=gcd(i,j),i=i'd,j=j'd d=gcd(i,j),i=id,j=jd

i + j ∣ i ∗ j → d ( i ′ + j ′ ) ∣ d 2 i ′ j ′ i+j|i*j\rightarrow d(i'+j')|d^2i'j' i+jijd(i+j)d2ij

i ′ + j ′ ∣ d i ′ j ′ i'+j'|di'j' i+jdij

由于 g c d ( i ′ , j ′ ) = 1 gcd(i',j')=1 gcd(i,j)=1所以 g c d ( i ′ + j ′ , i ′ j ′ ) = 1 gcd(i'+j',i'j')=1 gcd(i+j,ij)=1
所以也要求的就是 i ′ + j ′ ∣ d i'+j'|d i+jd

∑ i = 1 n ∑ j = i + 1 n ∑ d = 1 n / j [ u + v ∣ d ] [ g c d ( u , v ) = 1 ] \sum_{i=1}^n\sum_{j=i+1}^{n}\sum_{d=1}^{n/j}[u+v|d][gcd(u,v)=1] i=1nj=i+1nd=1n/j[u+vd][gcd(u,v)=1]
= ∑ i = 1 n ∑ j = i + 1 n n v ( u + v ) [ g c d ( u , v ) = 1 ] =\sum_{i=1}^n\sum_{j=i+1}^{n}\frac{n}{v(u+v)}[gcd(u,v)=1] =i=1nj=i+1nv(u+v)n[gcd(u,v)=1]

反演一下就是

∑ d μ ( d ) ∑ i , j n max ⁡ ( i , j ) ∗ ( i + j ) d 2 \sum_{d}\mu(d)\sum_{i,j}\frac{n}{\max(i,j)*(i+j)d^2} dμ(d)i,jmax(i,j)(i+j)d2n

枚举 k = i + j k=i+j k=i+j钦定一个大小顺序

∑ d μ ( d ) ∑ k = 1 ∑ i = k / 2 + 1 k − 1 n i k d 2 \sum_{d}\mu(d)\sum_{k=1}\sum_{i=k/2+1}^{k-1}\frac{n}{ikd^2} dμ(d)k=1i=k/2+1k1ikd2n

然后卡一下上界枚举 d , k d,k d,k,对 i i i整除分块
复杂度据说是 O ( n 3 4 ) O(n^{\frac 3 4}) O(n43)

#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
    char ch=gc();
    int res=0,f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define poly vector<int>
#define bg begin
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;}
inline void chemx(ll &a,ll b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=100005;
int mu[N],pr[N],tot;
bitset<N> vis;
inline void init(){
    mu[1]=1;
    for(int i=2;i<N;i++){
        if(!vis[i])pr[++tot]=i,mu[i]=-1;
        for(int j=1;i*pr[j]<N&&j<=tot;j++){
            vis[i*pr[j]]=1;
            if(i%pr[j]==0)break;
            mu[i*pr[j]]=-mu[i];
        }
    }
}
ll res,n;
int main(){
    init();
    n=read();
    for(ll d=1;d*d<=n;d++){
        ll now=0;
        for(ll k=1,lim=min(n/d/d,(ll)sqrt(n*2/d/d));k<=lim;k++){
            ll mx=n/d/d/k;
            for(ll j=k/2+1,nxt;j<k&&j<=mx;j=nxt+1){
                nxt=min(k-1,mx/(mx/j));
                now+=(nxt-j+1)*(mx/j);
            }
        }
        res+=now*mu[d];
    }
    cout<<res;
} 
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值