【Codeforces 1182E】 Product Oriented Recurrence(矩阵快速幂)

传送门

由于递推形式是乘法,没法直接矩乘
考虑将每个数表示成 c a 1 ∗ f 1 a 2 ∗ f 2 a 3 ∗ f 3 a 4 c^{a_1}*f_1^{a_2}*f_2^{a_3}*f_3^{a_4} ca1f1a2f2a3f3a4的形式

然后对指数就是加法递推了

随便矩乘搞一下就完了

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline ll readll(){
    char ch=gc();
    ll res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
int mod;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline int fix(int x){return (x<0)?x+mod:x;}
int m;
struct mat{
	int a[5][5];
	mat(){memset(a,0,sizeof(a));}
	inline void clear(){memset(a,0,sizeof(a));}
	friend inline mat operator *(cs mat &a,cs mat &b){
		mat c;
		for(int i=0;i<m;i++)
		for(int k=0;k<m;k++)
		for(int j=0;j<m;j++)
		Add(c.a[i][j],mul(a.a[i][k],b.a[k][j]));
		return c;
	}
};
int c,f1,f2,f3;
ll n;
int main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	#endif
	n=readll()-3,f1=read(),f2=read(),f3=read(),c=read();
	m=3;int ans=1;
	mod=1e9+6;
	mat a;a.a[0][0]=1,a.a[0][1]=1,a.a[1][0]=1,a.a[1][2]=1,a.a[2][0]=1;
	mat res;res.a[0][0]=1,res.a[1][1]=1,res.a[2][2]=1;
	for(ll x=n;x;x>>=1,a=a*a)if(x&1)res=res*a;
	mod=1e9+7;
//	cout<<res.a[2][0]<<" "<<res.a[1][0]<<" "<<res.a[0][0]<<'\n';
	Mul(ans,ksm(f1,res.a[2][0]));
	Mul(ans,ksm(f2,res.a[1][0]));
	Mul(ans,ksm(f3,res.a[0][0]));
	m=5,mod=1e9+6;
	a.clear();
	a.a[0][0]=1,a.a[1][0]=1,a.a[2][0]=1,a.a[3][0]=2,a.a[4][0]=mod-4,a.a[0][1]=1,a.a[1][2]=1,a.a[3][3]=1,a.a[4][3]=1,a.a[4][4]=1;
	res.clear();
	res.a[0][0]=1,res.a[1][1]=1,res.a[2][2]=1,res.a[3][3]=1,res.a[4][4]=1;
	for(ll x=n;x;x>>=1,a=a*a)if(x&1)res=res*a;
	int pw=add(mul(res.a[3][0],3),res.a[4][0]);
//	cout<<pw<<'\n';
	mod=1e9+7;
	Mul(ans,ksm(c,pw));
	cout<<ans<<'\n';
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值