【2020省选模拟】题解

T1:

二分答案后贪心即可

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define y1 shinkle
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline ll readll(){
    char ch=gc();
    ll res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline int readstring(char *s){
	int top=0;char ch=gc();
	while(isspace(ch))ch=gc();
	while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
	return top;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int N=200005;
int adj[N],nxt[N<<1],to[N<<1],ecnt;
int n,mxsiz,k,hs[N],s[N],flag,tag[N];
inline void addedge(int u,int v){
	nxt[++ecnt]=adj[u],adj[u]=ecnt,to[ecnt]=v;
}
pii dfs(int u,int fa){
	if(!flag)return pii(0,0);
	hs[u]=0;s[u]=-1;
	if(tag[u])s[u]=0;
	for(int e=adj[u];e;e=nxt[e]){
		int v=to[e];
		if(v==fa)continue;
		pii ret=dfs(v,u);
		if(!flag)return pii(0,0);
		if(ret.se==0)hs[u]+=ret.fi;
		else {
			if(s[u]==-1)s[u]=ret.fi;
			else if(s[u]>ret.fi)s[u]=ret.fi;
		}
	}
	if(tag[u]){
		if(hs[u]+1<=mxsiz)return pii(hs[u]+1,1);
		else {flag=0;return pii(0,0);}
	}
	if(s[u]==-1){
		if(hs[u]+1<=mxsiz)return pii(hs[u]+1,0);
		else {flag=0;return pii(0,0);}
	}
	else{
		if(hs[u]+1+s[u]<mxsiz)return pii(hs[u]+1+s[u],1);
		else if(hs[u]+1+s[u]==mxsiz)return pii(0,0);
		else if(hs[u]+1<=mxsiz)return pii(hs[u]+1,0);
		else {flag=0;return pii(0,0);}
	}
}
inline bool check(int mid){
	mxsiz=mid;flag=1;
	pii now=dfs(1,0);
	if(now.se==0&&now.fi)flag=0;
	return flag;
}
int main(){
	freopen("deep.in","r",stdin);
	freopen("deep.out","w",stdout);
	n=read(),k=read();
	for(int i=1;i<n;i++){
		int u=read(),v=read();
		addedge(u,v),addedge(v,u);
	}
	for(int i=1;i<=k;i++)tag[read()]=1;
	int l=1,r=n,res=0;
	while(l<=r){
		int mid=(l+r)>>1;
		if(check(mid))res=mid,r=mid-1;
		else l=mid+1;
	}
	cout<<res<<'\n';
	return 0;
}

T2:

看起来有时候二项式展开确实有局限性
某些问题上不如斯特林展开

我的做法是考虑枚举一号点所在连通块大小然后二项式展开维护贡献
形式是一个带 m m m的分治 n t t ntt ntt
f [ n ] [ m ] f[n][m] f[n][m] n 个 点 m n个点m nm次方的答案, g g g为无向连通图的个数
f [ n ] [ m ] = ∑ j = 0 m ( m j ) ∑ i = 1 n − 1 g i f n − i , m − j + g n f[n][m]=\sum_{j=0}^m{m\choose j}\sum_{i=1}^{n-1}g_if_{n-i,m-j}+g_n f[n][m]=j=0m(jm)i=1n1gifni,mj+gn
由于 g g g每次都是一样的可以做到 O ( n m l o g 2 n ) O(nmlog^2n) O(nmlog2n)

然后本地只要 1 s 1s 1s光荣 T T T

如果斯特林展开的话就是 n m = ∑ i = 0 m S m , i n i ‾ n^m=\sum_{i=0}^mS_{m,i}n^{\underline i} nm=i=0mSm,ini
n i ‾ n^{\underline i} ni的组合意义是 n n n个里有标号有序不重复的选 i i i个的方案
f n , i f_{n,i} fn,i表示 n n n个点选 i i i个的方案
那么 f n , i = ∑ j = 1 n ( n j ) g j f n − j , i − 1 f_{n,i}=\sum_{j=1}^n{n\choose j}g_jf_{n-j,i-1} fn,i=j=1n(jn)gjfnj,i1
这样就只用一个 l o g log log

我的两个 l o g log log代码

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define y1 shinkle
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline ll readll(){
    char ch=gc();
    ll res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline int readstring(char *s){
	int top=0;char ch=gc();
	while(isspace(ch))ch=gc();
	while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
	return top;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=998244353;
inline int add(int a,int b){return (a+b)>=mod?(a+b-mod):(a+b);}
inline int dec(int a,int b){return (a<b)?(a-b+mod):(a-b);}
inline int mul(int a,int b){static ll r;r=(ll)a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){a=(a+b)>=mod?(a+b-mod):(a+b);}
inline void Dec(int &a,int b){a=(a<b)?(a-b+mod):(a-b);}
inline void Mul(int &a,int b){static ll r;r=(ll)a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline int fix(int x){return (x<0)?x+mod:x;}
cs int N=300005;
int fac[N],ifac[N],cb[22][22];
typedef vector<int> poly;
inline void init_fac(){
	fac[0]=ifac[0]=1;
	for(int i=1;i<N;i++)fac[i]=mul(fac[i-1],i);
	ifac[N-1]=Inv(fac[N-1]);
	for(int i=N-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
	for(int i=0;i<=20;i++){
		cb[i][i]=cb[i][0]=1;
		for(int j=1;j<i;j++)
		cb[i][j]=add(cb[i-1][j],cb[i-1][j-1]);
	}
}
namespace Poly{
	cs int M=(1<<17)|5;
	int *w[18],rev[M],inv[M];
	inline void init_w(cs int C=17){
		for(int i=1;i<=C;i++)w[i]=new int [(1<<(i-1))|1];
		int wn=ksm(3,(mod-1)/(1<<C));w[C][0]=1;
		for(int i=1,l=1<<(C-1);i<l;i++)w[C][i]=mul(w[C][i-1],wn);
		for(int i=C-1;i;i--)
		for(int j=0,l=1<<(i-1);j<l;j++)w[i][j]=w[i+1][j<<1];
		inv[0]=inv[1]=1;
		for(int i=2;i<M;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
	}
	inline void init_rev(int lim){
		for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
	}
	inline void ntt(int *f,int lim,int kd){
		for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
		for(int mid=1,l=1,a0,a1;mid<lim;mid<<=1,l++)
		for(int i=0;i<lim;i+=mid<<1)
		for(int j=0;j<mid;j++)
		a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
		if(kd==-1){
			reverse(f+1,f+lim);
			for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv);
		}
	}
	inline poly operator *(poly a,poly b){
		int deg=a.size()+b.size()-1;
		if(a.size()<=16||b.size()<=16){
			poly c(deg,0);
			for(int i=0;i<a.size();i++)
			for(int j=0;j<b.size();j++)
			Add(c[i+j],mul(a[i],b[j]));
			return c;
		}
		int lim=1;while(lim<deg)lim<<=1;
		init_rev(lim);
		a.resize(lim),ntt(&a[0],lim,1);
		b.resize(lim),ntt(&b[0],lim,1);
		for(int i=0;i<lim;i++)Mul(a[i],b[i]);
		ntt(&a[0],lim,-1),a.resize(deg);
		return a;
	}
	inline poly operator +(poly a,cs poly &b){
		if(a.size()<b.size())a.resize(b.size());
		for(int i=0;i<b.size();i++)Add(a[i],b[i]);
		return a;
	}
	inline poly operator *(poly a,int b){
		for(int i=0;i<a.size();i++)Mul(a[i],b);
		return a;
	}
	inline poly Inv(poly a,int deg){
		poly b(1,::Inv(a[0])),c;
		for(int lim=4;lim<(deg<<2);lim<<=1){
			init_rev(lim),c.resize(lim>>1);
			for(int i=0;i<(lim>>1);i++)c[i]=(i<a.size()?a[i]:0);
			c.resize(lim),ntt(&c[0],lim,1);
			b.resize(lim),ntt(&b[0],lim,1);
			for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
			ntt(&b[0],lim,-1),b.resize(lim>>1);
		}b.resize(deg);return b;
	}
	inline poly deriv(poly a){
		for(int i=0;i+1<a.size();i++)a[i]=mul(a[i+1],i+1);
		a.pop_back();return a;
	}
	inline poly integ(poly a){
		a.pb(0);
		for(int i=(int)a.size()-1;i;i--)a[i]=mul(a[i-1],inv[i]);
		a[0]=0;return a;
	}
	inline poly Ln(poly a,int deg){
		a=integ(deriv(a)*Inv(a,deg)),a.resize(deg);return a;
	}
}
using namespace Poly;
cs int lim=30001,lm=15;
poly g;
int n,m,f[16][30005];
void cdq(int id,int l,int r){
	if(l==r){Add(f[id][l],g[l]);return;}
	int mid=(l+r)>>1;
	cdq(id,l,mid);
	poly a(mid-l+1),b(r-l+1);
	for(int i=0;i<=id;i++){
		for(int j=l;j<=mid;j++)
		Add(a[j-l],mul(mul(ifac[j],f[i][j]),cb[id][i]));
	}
	for(int j=l;j<=r;j++)
	b[j-l]=mul(g[j-l+1],ifac[j-l]);
	a=a*b;
	for(int i=mid+1;i<=r;i++)
	Add(f[id][i],mul(fac[i-1],a[i-l-1]));
	cdq(id,mid+1,r);
}
int main(){
	freopen("dark.in","r",stdin);
	freopen("dark.out","w",stdout);
	init_fac();init_w();
	poly p(lim);
	for(int i=0;i<lim;i++)p[i]=mul(ifac[i],ksm(2,(1ll*i*(i-1)/2)%(mod-1)));
	g=Ln(p,lim);
	for(int i=0;i<lim;i++)Mul(g[i],fac[i]);
	for(int i=1;i<lim;i++)f[0][i]=ksm(2,(1ll*i*(i-1)/2)%(mod-1));
	for(int i=1;i<=lm;i++)cdq(i,1,lim-1);
	int T=read();
	while(T--){
		int n=read(),m=read();
		cout<<f[m][n]<<'\n';
	}return 0;
}

T3:

用后缀平衡树维护
每个点开一个 v e c t o r vector vector维护一下平衡树子树所有位置
询问可以询问 r k rk rk相减
然后在每个点上的位置二分一下即可

复杂度是两个 l o g log log但跑的过去

代码

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值