【LOJ #6617】「THUPC 2019」摆家具 / furniture(DP / BSGS / 矩阵快速幂)

传送门

首先显然 k = l o g n k=logn k=logn

显然对于每个 i i i我们只用关注有多少位与询问的数字不同
考虑分成两个部分
先对每个数字 i i i求出与他有 j j j位不同的数字价值之和
再求出 t t t轮后 j j j位不同的数字会被计算多少次贡献

第一部分可以 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示前 i i i位与 j j j k k k位不同
用类似高维前缀和的分治 d p dp dp即可 O ( n k k 2 ) O(n^kk^2) O(nkk2)解决

第二部分可以 D P DP DP
f [ i ] [ j ] f[i][j] f[i][j]表示 i i i轮后有 j j j位不同的贡献次数
那么有 f [ i ] [ j ] = f [ i − 1 ] [ j ] ∗ ( n − 2 ) ∗ j + f [ i − 1 ] [ j − 1 ] ∗ ( k − j + 1 ) ∗ ( n − 1 ) + f [ i − 1 ] [ j + 1 ] ∗ ( j + 1 ) f[i][j]=f[i-1][j]*(n-2)*j+f[i-1][j-1]*(k-j+1)*(n-1)+f[i-1][j+1]*(j+1) f[i][j]=f[i1][j](n2)j+f[i1][j1](kj+1)(n1)+f[i1][j+1](j+1)

开始想写成生成函数的形式发现是套求导的递归

冷静一下发现直接矩乘即可
可以发现是向量乘矩阵
如果用 B S G S BSGS BSGS预处理后
可以做到单次询问 O ( k 2 ) O(k^2) O(k2)

复杂度 O ( n k k 2 + Q k 2 ) O(n^kk^2+Qk^2) O(nkk2+Qk2)

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define y1 shinkle
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline ll readll(){
    char ch=gc();
    ll res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline int readstring(char *s){
	int top=0;char ch=gc();
	while(isspace(ch))ch=gc();
	while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
	return top;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=998244353;
inline int add(int a,int b){return (a+b>=mod)?(a+b-mod):(a+b);}
inline int dec(int a,int b){return (a<b)?(a-b+mod):(a-b);}
inline int mul(int a,int b){return (ll)a*b%mod;}
inline void Add(int &a,int b){a=(a+b>=mod)?(a+b-mod):(a+b);}
inline void Dec(int &a,int b){a=(a<b)?(a-b+mod):(a-b);}
inline void Mul(int &a,int b){a=(ll)a*b%mod;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
typedef unsigned long long ull;
cs int N=1000005,M=22;
int *fp,f[N][M],s[M],cnt[M];
int n,K,q,lim,val[N];
inline int count(int x){
	int cnt=0;
	for(int i=1;i<=K;i++){
		if(x%n)cnt++;x/=n;
	}return cnt;
}
inline int comp(int x,int y){
	int cnt=0;
	for(int i=1;i<=K;i++){
		if(x%n!=y%n)cnt++;
		x/=n,y/=n;
	}return cnt;
}
inline void DP(){
	for(int i=0;i<lim;i++)f[i][0]=val[i],cnt[count(i)]++;
	for(int i=0;i<=K;i++)cnt[i]=Inv(cnt[i]);
	for(int mid=1;mid<lim;mid*=n){
		for(int i=0;i<lim;i+=mid*n)
		for(int j=0;j<mid;j++){
			for(int l=0;l<n;l++)
			for(int p=0;p<=K;p++)
			Add(s[p],f[i+j+l*mid][p]);
			for(int l=0,ps;l<n;l++){
				ps=i+j+l*mid;
				for(int p=K;~p;p--)
				f[ps][p]=add(f[ps][p],(p==0)?0:dec(s[p-1],f[ps][p-1]));
			}
			for(int p=0;p<=K;p++)s[p]=0;
		}
	}
}
__int128 tp[M][M];
cs ull MOD=(ull)mod*mod*6;
struct mat{
	int a[M][M];
	mat(){memset(a,0,sizeof(a));}
	friend inline mat operator *(cs mat &a,cs mat &b){
		mat c;
		for(re int i=0;i<=K;i++)
		for(re int k=0;k<=K;k++)
		for(re int j=0;j<=K;j++)
		tp[i][j]+=(ll)a.a[i][k]*b.a[k][j];
		for(re int i=0;i<=K;i++)
		for(re int j=0;j<=K;j++)
		c.a[i][j]=tp[i][j]%mod,tp[i][j]=0;
		return c;
	}
	friend inline mat operator ^(cs mat &a,cs mat &b){
		mat c;
		for(re int j=0;j<=K;j++)
		for(re int i=0;i<=K;i++)
		tp[0][i]+=(ll)a.a[0][j]*b.a[j][i];
		for(re int i=0;i<=K;i++)c.a[0][i]=tp[0][i]%mod,tp[0][i]=0;
		return c;
	}
}pw1[1001],pw2[1001],pw3[1001],I,bs,ret;
inline void init_matrix(){
	for(int i=0;i<=K;i++)
	for(int i=0;i<=K;i++){
		bs.a[i][i]=mul(n-2,i);
		if(i)bs.a[i-1][i]=mul(K-i+1,n-1);
		bs.a[i+1][i]=i+1;
	}
	for(int i=0;i<=K;i++)I.a[i][i]=1;
	pw1[0]=pw2[0]=pw3[0]=I;
	for(int i=1;i<=1000;i++)pw1[i]=pw1[i-1]*bs;
	for(int i=1;i<=1000;i++)pw2[i]=pw2[i-1]*pw1[1000];
	for(int i=1;i<=1000;i++)pw3[i]=pw3[i-1]*pw2[1000];	
}
int last=1;
int main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	freopen("my.out","w",stdout);
	#endif
	n=read(),K=read(),q=read(),lim=ksm(n,K);
	for(int i=0;i<lim;i++)val[i]=read();
	DP();
	for(int i=0;i<lim;i++){
		for(int j=0;j<=K;j++)
		Mul(f[i][j],cnt[j]);
	}
	init_matrix();
	while(q--){
		int a=read(),b=mul(read(),last);
		int res=0;fp=f[a];
		ret=mat();ret.a[0][0]=1;
		ret=ret^pw1[b%1000],b/=1000;
		ret=ret^pw2[b%1000],b/=1000;
		ret=ret^pw3[b%1000],b/=1000;
		for(int i=0;i<=K;i++)Add(res,mul(ret.a[0][i],fp[i]));
		cout<<(last=res)<<'\n';
	}return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值