【BZOJ5252】【洛谷P4383】【2018九省联考】—林克卡特树(二分+树形dp)

毒瘤BZOJ1s传送门

洛谷传送门

题意有点复杂,实际上就是在求 n + 1 n+1 n+1条链,使其长度和最大

考虑60分的dp
f [ i ] [ j ] f[i][j] f[i][j]表示 i i i的子树有 j j j条链时的最大长度
发现这个几乎无法dp对吧

考虑到链上的点度数必然小于3
再加一维表示 i i i的度数

发现现在就很好维护了
分类讨论一下就可以了

但100分时k太大了
O ( n k ) O(nk) O(nk)无法承受

但如果我们把 1 1 1~ k k k时的 f f f打出来会发现这是一个上凸函数
就可以带权二分解决了

不会带权二分可以看这里

#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
	char ch=getchar();
	int res=0,f=1;
	while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
	return res*f;
}
const int N=3e5+5;
const int infr=1e9;
const ll inf=1e12;
int n,k,cnt,adj[N],nxt[N<<1],to[N<<1];
struct dp{
	ll val;int k;
	dp(ll _val=0,int _k=0){
		val=_val,k=_k;
	}
	friend inline bool operator <(const dp &a,const dp &b){
		return (a.val==b.val)?(a.k>b.k):(a.val<b.val);
	}
	friend inline dp operator +(const dp &a,const dp &b){
		return dp(a.val+b.val,a.k+b.k);
	}
}f[N][3],tr[3];
ll l,r,mid,val[N<<1];
inline void addedge(int u,int v,int w){
	nxt[++cnt]=adj[u],adj[u]=cnt,to[cnt]=v,val[cnt]=w;
}
inline void init(){
	for(int i=1;i<=n;i++)f[i][0]=dp(0,0),f[i][1]=dp(-inf,infr),f[i][2]=dp(-mid,1);
}
inline void dfs(int u,int fa){
	for(int e=adj[u];e;e=nxt[e]){
		int v=to[e];ll va=val[e];
		if(v==fa)continue;dfs(v,u);
		for(int i=0;i<3;i++)tr[i]=dp(-inf,infr);
		for(int i=0;i<3;i++)tr[0]=max(tr[0],f[u][0]+f[v][i]);
		tr[1]=max(tr[1],f[u][0]+f[v][0]+dp(va-mid,1));
		tr[1]=max(tr[1],f[u][0]+f[v][1]+dp(va,0));
		for(int i=0;i<3;i++)tr[1]=max(tr[1],f[u][1]+f[v][i]);
		tr[2]=max(tr[2],f[u][1]+f[v][0]+dp(va,0));
		tr[2]=max(tr[2],f[u][1]+f[v][1]+dp(va+mid,-1));
		for(int i=0;i<3;i++)tr[2]=max(tr[2],f[u][2]+f[v][i]);
		for(int i=0;i<3;i++)f[u][i]=tr[i];
	}
}
int main(){
	n=read(),k=read();
	for(int i=1;i<n;i++){
		int u=read(),v=read(),w=read();
		addedge(u,v,w),addedge(v,u,w);
	}
	l=-inf,r=inf;
	while(l<r){
		mid=(double)(l+r)/2-0.5,init(),dfs(1,0);
		dp now=max(f[1][0],max(f[1][1],f[1][2]));
		if(now.k==k+1){cout<<(now.val+(k+1)*mid);return 0;}
		if(now.k>k+1)l=mid+1;else r=mid;
	}
	mid=l,init(),dfs(1,0);dp now=max(f[1][0],max(f[1][1],f[1][2]));
	cout<<(now.val+(k+1)*mid);
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值