【BZOJ4518】【SDOI2016】—征途(斜率优化dp)

传送门

题意:有 n n n个数,要把这些数分成连续的 m m m段使方差最小

由于 s 2 = ∑ i = 1 n ( d − d i ) 2 m s^2=\frac{\sum_{i=1}^{n}(d-d_i)^2}{m} s2=mi=1n(ddi)2

s 2 ∗ m 2 = m ∗ ∑ i = 1 n ( d − d i ) 2 s^2*m^2=m*\sum_{i=1}^{n}(d-d_i)^2 s2m2=mi=1n(ddi)2

s u m k = ∑ i = 1 k d i sum_k=\sum_{i=1}^{k}d_i sumk=i=1kdi

因为 d = ∑ i = 1 n d i m = s u m n m d=\frac{\sum_{i=1}^{n}d_i}{m}=\frac{sum_n}{m} d=mi=1ndi=msumn
化简得 ∑ i = 1 n ( d i 2 ) − ( ∑ i = 1 n d i ) 2 \sum_{i=1}^{n}(d_i^2)-(\sum_{i=1}^{n}d_i)^2 i=1n(di2)(i=1ndi)2

也就是要最小化 ∑ i = 1 n ( d i 2 ) \sum_{i=1}^{n}(d_i^2) i=1n(di2)

那就有一个很显然的 O ( n 2 m ) O(n^2m) O(n2m) d p dp dp
f [ j ] [ i ] f[j][i] f[j][i]表示前 i i i个分 j j j段的最小值

f [ k ] [ i ] = M i n ( f [ k − 1 ] [ j ] + ( s u m i − s u m j ) 2 ) f[k][i]=Min(f[k-1][j]+(sum_i-sum_j)^2) f[k][i]=Min(f[k1][j]+(sumisumj)2)

考虑优化
如果一个决策点 a a a b b b

f [ k ] [ a ] + ( s u m i − s u m a ) 2 &lt; f [ k ] [ b ] + ( s u m i − s u m b ) 2 f[k][a]+(sum_i-sum_a)^2&lt;f[k][b]+(sum_i-sum_b)^2 f[k][a]+(sumisuma)2<f[k][b]+(sumisumb)2

化简就变成了 f a + s u m a 2 − f b − s u m b 2 s u m a − s u m b ≤ 2 ∗ s u m i \frac{f_a+sum_a^2-f_b-sum_b^2}{sum_a-sum_b}\le2*sum_i sumasumbfa+suma2fbsumb22sumi

f a + s u m a 2 f_a+sum_a^2 fa+suma2看做 x x x, s u m a sum_a suma看做 y y y
因为 s u m sum sum单调
也就是说可以维护一个斜率递增的序列

答案也就从当前最小的斜率转移过来就行了

#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read(){
	char ch=getchar();
	int res=0,f=1;
	while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
	return res*f;
}
const int N=3005;
const double eps=1e-9;
int sum[N],f[N][N],d[N],n,m;
double q[N];
inline int P(int x){
	return x*x;
}
inline double slope(int p,int a,int b){
	return (double)(1.0*f[p][a]+P(sum[a])-f[p][b]-P(sum[b]))/(sum[a]-sum[b]);
}
signed main(){
	n=read(),m=read();
	for(int i=1;i<=n;i++)d[i]=read(),sum[i]=sum[i-1]+d[i],f[1][i]=P(sum[i]);
	for(int j=2;j<=m;j++){
		int hd=1,tl=0;
		for(int i=1;i<=n;i++){
			while(hd<tl&&slope(j-1,q[hd],q[hd+1])<2*sum[i])hd++;
			int now=q[hd];
			f[j][i]=f[j-1][now]+P(sum[i]-sum[now]);
			while(hd<tl&&slope(j-1,q[tl-1],q[tl])>slope(j-1,q[tl-1],i))tl--;
			q[++tl]=i;
		}
	}
	int ans=m*f[m][n]-P(sum[n]);
	cout<<ans;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值