显然的一个性质就是每次拔高都拔高一段 [ x , n ] [x,n] [x,n]最优
考虑朴素
d
p
dp
dp
f
[
i
]
[
j
]
[
k
]
f[i][j][k]
f[i][j][k]表示前
i
i
i株玉米,拔高了
j
j
j次,当前最高的为
k
k
k的数量
发现
i
i
i这一维没有用,可以直接省去
考虑转移是每次找之前满足
x
≤
h
[
i
]
+
j
,
y
≤
k
x\le h[i]+j,y\le k
x≤h[i]+j,y≤k的
f
[
x
]
[
y
]
f[x][y]
f[x][y]
这就是一个二维前缀最大值
树状数组维护一下就可以了
#include<bits/stdc++.h>
using namespace std;
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
return res;
}
const int N=10004;
const int M=505;
const int K=6005;
inline void chemx(int &a,int b){
a=a>b?a:b;
}
int tr[K][M];
#define lowbit(x) (x&(-x))
inline void update(int x,int y,int k){
for(int i=x;i<=5500;i+=lowbit(i)){
for(int j=y;j<=501;j+=lowbit(j))
chemx(tr[i][j],k);
}
}
inline int query(int x,int y,int res=0){
for(int i=x;i;i-=lowbit(i)){
for(int j=y;j;j-=lowbit(j))
chemx(res,tr[i][j]);
}
return res;
}
int ans,n,k,h[N];
int main(){
n=read(),k=read();
for(int i=1;i<=n;i++)h[i]=read();
for(int i=1;i<=n;i++){
for(int j=k;~j;j--){
int res=query(h[i]+j,j+1)+1;
chemx(ans,res);
update(h[i]+j,j+1,res);
}
}
cout<<ans;
}