【BZOJ1061】【Noi2008】—志愿者招募(线性规划+对偶)

传送门


Solution:

线性规划:

题目要求 M i n ∑ i = 1 n C i x i {Min}\sum_{i=1}^nC_ix_i Mini=1nCixi
满足约束
∑ l i ≤ j ≤ r i x i ≥ A j , j ∈ [ 1 , m ] \sum_{l_i\le j\le r_i}x_i\geq A_j,j\in[1,m] lijrixiAj,j[1,m]
x i ≥ 0 x_i\geq0 xi0

转对偶:

即求 M a x ∑ j = 1 m A j y j {Max}\sum_{j=1}^mA_jy_j Maxj=1mAjyj

满足约束 ∑ l i ≤ j ≤ r i y j ≤ C i , i ∈ [ 1 , n ] \sum_{l_i\le j\le r_i}y_j\le C_i,i\in[1,n] lijriyjCi,i[1,n]
y i ≥ 0 y_i\geq 0 yi0

发现初始解可行,套板子就完了

#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return ib==ob?EOF:*ib++;
}
#define gc getchar
#define pb push_back
inline int read(){
    char ch=gc();
    int res=0,f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
const int N=1005,M=10005;
int n,m;
double f[M][N];
const double eps=1e-6,inf=1e18;
inline void povit(int l,int e){
	double t=f[l][e];
	for(int j=0;j<=n;j++)f[l][j]/=t;
	for(int i=0;i<=m;i++)if(l!=i&&fabs(f[i][e])>0){
		t=f[i][e],f[i][e]=0;
		for(int j=0;j<=n;j++)f[i][j]-=t*f[l][j];
	}
}
inline void simplex(){
	while(1){
		int l=0,e=0;double mn=inf;
		for(int i=1;i<=n;i++)if(f[0][i]>eps){e=i;break;}
		if(!e)break;
		for(int i=1;i<=m;i++)if(f[i][e]>eps&&f[i][0]/f[i][e]<mn)
			mn=f[i][0]/f[i][e],l=i;
		povit(l,e);
	}
}
int main(){
	n=read(),m=read();
	for(int i=1;i<=n;i++)f[0][i]=read();
	for(int i=1;i<=m;i++){
		int l=read(),r=read();f[i][0]=read();
		for(int j=l;j<=r;j++)f[i][j]=1;
	}
	simplex();
	cout<<(int)-f[0][0];
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值