描述
给出 n n n, m m m, x x x,你需要求出下列式子的值:
∑
(
∑
i
≤
m
k
i
)
=
n
∏
i
≤
m
s
i
n
(
k
i
∗
x
)
\sum_{(\sum_{i≤m}{k_i})=n}\prod_{i≤m}sin(k_i∗x)
(∑i≤mki)=n∑i≤m∏sin(ki∗x)
其中
k
i
k_i
ki为正整数,由于答案非常大,你只需要输出答案(保证不为 0)的正负(如果是负数输出负号,否则输出正号)和从左往右第一个非 0 数位上的数字即可。
Solution
设?(?, ?)表示 k 的序列大小为 m,k 之和为 n 时的答案。
我们对
k
m
k_m
km进行分类讨论来得到?(?, ?)的转移:
- k m k_m km=1,则?(? − 1, ? − 1) ∗ sin(?) −→ ?(?, ?)
-
k
m
k_m
km> 1,考虑对???(? ∗ ?)进行下列变换:
???(? ∗ ?) = ???(?) ∗ ???((? − 1) ∗ ?) + ???(?) ∗ ???((? − 1) ∗ ?)
又???(?) ∗ ???(? ∗ ?) = ???(?) ∗ (???(?) ∗ ???((? − 1) ∗ ?) − ???(?) ∗ ???((? − 1) ∗ ?))
= ???(?) ∗ ???(?) ∗ ???((? − 1) ∗ ?) + (???2
(?) − 1) ∗ ???((? − 1) ∗ ?)
= ???(?) ∗ (???(?) ∗ ???((? − 1) ∗ ?) + ???(?) ∗ ???((? − 1) ∗ ?)) − ???((? − 1) ∗ ?)
= ???(?) ∗ ???(? ∗ ?) − ???((? − 1) ∗ ?)
所以???(? ∗ ?) = 2 ???(?) ∗ ???((? − 1) ∗ ?) − ???((? − 2) ∗ ?)
则这部分的贡献为:
2?(? − 1, ?) ∗ ???(?) − ?(? − 2, ?) ⟶ \longrightarrow ⟶ ?(?, ?)
显然可以用矩阵乘法优化这个过程。
所以复杂度为 O ( m 3 l o g n ) O(m^3logn) O(m3logn)
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
#define ll long long
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
const int N=62;
int siz;
struct mat{
double a[N][N];
mat(){memset(a,0,sizeof(a));}
inline const double *const operator [](const int &oset)const{return a[oset];}
inline double *const operator [](const int &oset){return a[oset];}
friend inline mat operator *(const mat &a,const mat &b){
mat c;
for(int i=1;i<=siz;i++)
for(int j=1;j<=siz;j++)
for(int k=1;k<=siz;k++)
c[i][k]+=a[i][j]*b[j][k];
return c;
}
}A,B;
inline mat ksm(mat a,int b,mat res){
for(;b;b>>=1,a=a*a)if(b&1)res=res*a;
return res;
}
int T;
int n,m;
double x;
int main(){
cin>>T;
while(T--){
cin>>m>>n>>x;siz=m*2;
A=mat(),B=mat();
for(int i=m+1;i<=m*2;i++){
A[i][i-m]=1;
A[i-m][i]=-1;
A[i][i]=2*cos(x);
if(i<m*2)A[i][i+1]=sin(x);
}
B[1][1]=sin(x);
B[1][m+1]=sin(2*x);
B[1][m+2]=sin(x)*sin(x);
B=ksm(A,n-1,B);
double res=B[1][m];
if(res<0)putchar('-'),res=-res;
else putchar('+');
while(res<1)res*=10;
while(res>=10)res/=10;
putchar((int)(floor(res))^48);puts("");
}
}