考虑说要求一个
a
n
=
∑
i
=
1
k
a
n
−
i
f
i
a_n=\sum_{i=1}^{k}a_{n-i}f_i
an=∑i=1kan−ifi
写成矩阵的形式就是
A n = A n − 1 F = A 0 F n A_n=A_{n-1}F=A_0F^n An=An−1F=A0Fn
实际上
F
n
F^n
Fn最后就是一个长度为
k
k
k的向量
满足
a
n
=
∑
i
=
1
k
c
i
a
i
a_n=\sum_{i=1}^{k}c_ia_i
an=∑i=1kciai
这样的形式
由 C a y l e y − H a m i l t o n Cayley-Hamilton Cayley−Hamilton定理可以得到 F F F的特征多项式
g ( λ ) = d e t ( λ I − F ) = λ k − f 1 λ k − 1 − f 2 λ k − 2 … … − f k = 0 g(λ)=det(λI-F)=λ^k-f_{1}λ^{k-1}-f_{2}λ^{k-2}……-f_k=0 g(λ)=det(λI−F)=λk−f1λk−1−f2λk−2……−fk=0
而且 g g g最高次只有 k − 1 k-1 k−1次
所以我们可以倍增多项式取模
O
(
k
l
o
g
k
l
o
g
n
)
O(klog_klog_n)
O(klogklogn)求出
F
n
%
g
F^n\% g
Fn%g
由于
g
(
λ
)
=
0
g(λ)=0
g(λ)=0,所以
F
n
%
g
=
F
n
F^n\% g=F^n
Fn%g=Fn
然后就完了
注意读入的数最小有 − 1 e 9 -1e9 −1e9
#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define poly vector<int>
#define bg begin
#define int long long
cs int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(ll &a,ll b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=128005,C=19;
poly w[C+1];
inline void init_w(){
for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
int wn=ksm(G,(mod-1)/(1<<C));
w[C][0]=1;
for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
for(int i=C-1;i;i--)
for(int j=0;j<(1<<(i-1));j++)
w[i][j]=w[i+1][j<<1];
}
int rev[N<<2];
inline void init_rev(int lim){
for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
for(int mid=1,l=1;mid<lim;mid<<=1,l++)
for(int i=0;i<lim;i+=(mid<<1))
for(int j=0,a0,a1;j<mid;j++)
a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),
f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
if(kd==-1&&(reverse(f.bg()+1,f.bg()+lim),1))
for(int inv=ksm(lim,mod-2),i=0;i<lim;i++)Mul(f[i],inv);
}
inline poly operator +(poly a,poly b){
poly c;int lim=max(a.size(),b.size());c.resize(lim);
a.resize(lim),b.resize(lim);
for(int i=0;i<lim;i++)c[i]=add(a[i],b[i]);return c;
}
inline poly operator -(poly a,poly b){
poly c;int lim=max(a.size(),b.size());c.resize(lim);
a.resize(lim),b.resize(lim);
for(int i=0;i<lim;i++)c[i]=dec(a[i],b[i]);return c;
}
inline poly operator *(poly a,int b){
for(int i=0;i<a.size();i++)Mul(a[i],b);return a;
}
inline poly operator /(poly a,int b){
for(int i=0,inv=ksm(b,mod-2);i<a.size();i++)Mul(a[i],inv);
return a;
}
inline poly operator *(poly a,poly b){
int deg=a.size()+b.size()-1,lim=1;
if(deg<=128){
poly c(deg,0);
for(int i=0;i<a.size();i++)
for(int j=0;j<b.size();j++)
Add(c[i+j],mul(a[i],b[j]));
return c;
}
while(lim<deg)lim<<=1;init_rev(lim);
a.resize(lim),ntt(a,lim,1);
b.resize(lim),ntt(b,lim,1);
for(int i=0;i<lim;i++)Mul(a[i],b[i]);
ntt(a,lim,-1),a.resize(deg);
return a;
}
inline poly Inv(poly a,int deg){
poly c,b(1,ksm(a[0],mod-2));
for(int lim=4;lim<(deg<<2);lim<<=1){
init_rev(lim);
c=a,c.resize(lim>>1);
c.resize(lim),ntt(c,lim,1);
b.resize(lim),ntt(b,lim,1);
for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
ntt(b,lim,-1),b.resize(lim>>1);
}b.resize(deg);return b;
}
inline poly operator /(poly a,poly b){
int lim=1,deg=(int)a.size()-(int)b.size()+1;
reverse(a.bg(),a.end());
reverse(b.bg(),b.end());
while(lim<=deg)lim<<=1;
b=Inv(b,lim),b.resize(deg);
a=a*b,a.resize(deg);
reverse(a.bg(),a.end());
return a;
}
inline poly operator %(poly a,poly b){
int deg=(int)a.size()-(int)b.size()+1;
if(deg<0)return a;
poly c=a-(a/b)*b;
c.resize(b.size()-1);
return c;
}
int n,m,a[N];
poly f,g;
signed main(){
init_w();
n=read(),m=read();
f.resize(m+1);
for(int i=1;i<=m;i++)f[m-i]=read(),f[m-i]=mod-(f[m-i]%mod+mod)%mod;
f[m]=1;
for(int i=0;i<m;i++)a[i]=read(),a[i]=(a[i]%mod+mod)%mod;
poly res,g;
res.resize(m+1),res[0]=1;
g.resize(m+1),g[1]=1;
for(;n;n>>=1,g=g*g%f){if(n&1)res=res*g%f;}
int anc=0;
for(int i=0;i<res.size();i++)Add(anc,mul(res[i],a[i]));
cout<<anc;
}