【Codechef】—Walk on Tree(BM+常系数线性递推)

传送门


O ( n 3 l o g k ) O(n^3logk) O(n3logk)的做法很显然

考虑说实际上是要求对矩阵的某些位置求和
实际上这个是有递推式的,而且递推式就是矩阵的特征多项式

实际很显然的每次都是对特征多项式取模
一个位置就是寻常的常系数线性递推
对一些位置求和的话也是一样满足的

暴力 d p dp dp把前 n n n项搞出来然后 B M BM BM水过去

#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0,f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
#define pb push_back
#define cs const
#define ll long long
#define poly vector<int>
#define bg begin
cs int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(ll &a,ll b){a<b?a=b:0;}
inline void chemn(ll &a,ll b){a>b?a=b:0;}
cs int N=(1<<17)|5,C=17;
poly w[C+1];
inline void init_w(){
	for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
	int wn=ksm(G,(mod-1)/(1<<C));
	w[C][0]=1;
	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
	for(int i=C-1;i;i--)
	for(int j=0;j<(1<<(i-1));j++)
	w[i][j]=w[i+1][j<<1];
}
int rev[N];
inline void init_rev(int lim){
	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
	for(int a0,a1,mid=1,l=1;mid<lim;mid<<=1,l++)
	for(int i=0;i<lim;i+=(mid<<1))
	for(int j=0;j<mid;j++)
	a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
	if(kd==-1){
		reverse(f.bg()+1,f.bg()+lim);
		for(int i=0,inv=ksm(lim,mod-2);i<lim;i++)Mul(f[i],inv);
	}
}
inline poly operator +(poly a,poly b){
	int deg=max(a.size(),b.size());
	a.resize(deg),b.resize(deg);
	for(int i=0;i<deg;i++)Add(a[i],b[i]);
	return a;
}
inline poly operator -(poly a,poly b){
	int deg=max(a.size(),b.size());
	a.resize(deg),b.resize(deg);
	for(int i=0;i<deg;i++)Dec(a[i],b[i]);
	return a;
}
inline poly operator *(poly a,poly b){
	int deg=a.size()+b.size()-1,lim=1;
	if(deg<128){
		poly c(deg,0);
		for(int i=0;i<a.size();i++)
		for(int j=0;j<b.size();j++)
		Add(c[i+j],mul(a[i],b[j]));
		return c;
	}
	while(lim<deg)lim<<=1;
	init_rev(lim);
	a.resize(lim),ntt(a,lim,1);
	b.resize(lim),ntt(b,lim,1);
	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
	ntt(a,lim,-1),a.resize(deg);
	return a;
}
inline poly Inv(poly a,int deg){
	poly b(1,ksm(a[0],mod-2)),c;
	for(int lim=4;lim<(deg<<2);lim<<=1){
		c=a,c.resize(lim>>1);
		init_rev(lim);
		b.resize(lim),c.resize(lim);
		ntt(b,lim,1),ntt(c,lim,1);
		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
		ntt(b,lim,-1),b.resize(lim>>1);
	}b.resize(deg);
	return b;
}
inline poly operator /(poly a,poly b){
	int deg=(int)a.size()-(int)b.size()+1;
	if(deg<0)return poly(1,0);
	reverse(a.bg(),a.end());
	reverse(b.bg(),b.end());
	a.resize(deg),b.resize(deg);
	poly c=a*Inv(b,deg);c.resize(deg);
	reverse(c.bg(),c.end());
	return c;
}
inline poly operator %(poly a,poly b){
	if(a.size()<b.size())return a;
	a=a-(a/b)*b;a.resize(b.size()-1);return a;
}
inline poly ksm(poly a,int b,poly res,poly Mod){
	for(;b;b>>=1,a=a*a%Mod)if(b&1)res=res*a%Mod;
	return res;
}
namespace Cas{
	poly f;int n;
	inline void init(poly coef){
		init_w();
		n=coef.size();
		f.resize(n+1);
		for(int i=1;i<=n;i++)f[n-i]=mod-coef[i];
		f[n]=1;
	}
	inline poly calc(int k){
		poly g(2),res(1,1);g[1]=1;
		res=ksm(g,k,res,f);
		return res;
	}
}
namespace B_M{
	poly r[N];
	int fail[N],del[N],a[N],n,cnt;
	inline void update(int i){
		cnt++;
		int Mu=mul(dec(del[i],a[i]),ksm(dec(del[fail[cnt-2]],a[fail[cnt-2]]),mod-2));
		r[cnt].resize(i-fail[cnt-2],0);
		r[cnt].pb(Mu);
		for(int j=1;j<r[cnt-2].size();j++)
		r[cnt].pb(mul(Mu,mod-r[cnt-2][j]));
		r[cnt]=r[cnt]+r[cnt-1];
	}
	inline void BM(){
		for(int i=1;i<=n;i++){
			for(int j=1;j<r[cnt].size();j++)
			Add(del[i],mul(r[cnt][j],a[i-j]));
			if(del[i]!=a[i]){
				fail[cnt]=i;
				if(!cnt)r[++cnt].resize(i);
				else update(i);
			}
		}
		Cas::init(r[cnt]);
	}
	inline void init(int *v,int len){
		n=len;
		for(int i=1;i<=n;i++)a[i]=v[i-1];
		BM();
	}
}
vector<int> e[3005];
int f[3005][6005];
int n,K,rt,lim;
int main(){
	n=read(),lim=2*n;
	for(int i=1;i<n;i++){
		int u=read(),v=read();
		e[u].pb(v),e[v].pb(u);
	}
 	rt=read(),K=read();	
 	f[rt][0]=1;
 	for(int i=0;i<lim;i++)
 	for(int u=1;u<=n;u++)if(f[u][i])
 	for(int &v:e[u])Add(f[v][i+1],f[u][i]);
 	B_M::init(f[rt],lim);
 	poly res=Cas::calc(K);
 	for(int i=1;i<=n;i++){
 		int anc=0;
 		for(int j=0;j<res.size();j++)Add(anc,mul(f[i][j],res[j]));
 		cout<<anc<<" ";
	 }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值