大数据学习之路,MapReduce的实例(WordCount)解析

图解MR(WC)

在这里插入图片描述

第一步,input

读取文件内容

第二步,split 分片

一个块容量(blocksize)是128M,假如300MB的一个文件,blocksize默认是128M,那么分成3个块去存储;如果一个文件大小为128.01MB,因为128M是有buffer,缓冲大小为10%,最后需要其实也就是一个块

第三步,map

将word => (word,1) ,类似于key-value键值对

第四步,shuffle

洗牌
默认按照key的hash值进行分发,(也可以不用hash值分发,也可以用其他规则)默认就是按hash中的partitioner(分组),可以改造这个,比如有个文件存的是电话号码:
phone count
131xxxxx
135xxxxx
185xxxxx
137xxxxx
如果按照hash值去分的话,就需要很多shuffle(shuffle是需要消耗内存的),所以我们需要去改造,比如前三位相同就可以做个分组,这样就很快了;最后相同的key肯定要分发到同一个reduce任务上去,做最后的汇总操作

第五步,reduce

归约汇总 这里对value做加法

第六步,result

写文件,output 然后就会生成类似于下面的文件
_SUCCESS
part-0-000000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值