先回顾一下几个背包问题的定义:
01背包:每个物品只有取或者不取两个状态
完全背包:每个物品可以取无限多次
多重背包:每个物品可以多次取,但次数不同
众所周知,01背包使用二维dp可以任意交换物品顺序与背包顺序,用一维dp的话必须先物品再背包且背包为倒序,不然会重复拿物品,倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。完全背包完全背包的两个for循环的先后顺序都是可以的。
注意,纯完全背包求得是能否凑成总和,即dp数组中存放的是能凑出的最大重量(最大值)和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!因此,有些题目如果涉及顺序的话需要多加考虑,使用零钱兑换②为例:
给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10]
输出:1
代码量很少:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
如果我们交换下顺序:
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}
将会发现无法通过测试用例,这里画图来解释下其中的原因:
第一种情况,结合代码去理解:
第二种情况:
小结:
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。