python实现图像特征提取算法2

实现广义Hough变换算法(Generalized Hough Transform)可以用于检测任意形状的对象,不限于标准的直线或圆形。这里将详细介绍广义Hough变换的原理及其Python实现。

1.广义Hough变换算法详解

广义Hough变换的基本原理是将目标形状(通常用边缘检测后的二值图像表示)的每个像素点转化为其可能的参数空间(例如,中心点、旋转角度等)中的投票。通过累积这些投票,可以找到在图像中存在的目标形状的位置和方向。

算法步骤
  1. 预处理:获取目标形状的边缘图像。

  2. 定义参数空间:根据目标形状的特征,定义参数空间(通常是多维的),例如中心点坐标、角度、比例等。

  3. 填充累加器:对于每个目标形状的像素点,计算其在参数空间中的可能位置,并在累加器中进行累加。

  4. 确定目标位置:在累加器中找到最高投票的位置,该位置即为目标形状在原始图像中的位置和属性。

Python 实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值