目录
-
-
- 1. Python 经验相关问题
- 2. 开源框架 LangChain、Diffy 使用经验
- 3. 向量数据库的使用
- 4. Text-SQL 模型的理解
- 5. Python Web 框架的使用
- 6. 编写 Prompt 和 AI 应用能力
- 7. 沟通与团队合作能力
- 8. 自驱动力与问题解决能力
- 9. 好奇心与快速学习能力
- 10. 接受应届毕业生
- 11. 熟悉大模型和智能问答系统的开发
- 12. 多模态应用开发
- 13. 开源框架 Diffy 的使用经验
- 14. 优化文档问答服务的经验
- 15. 熟悉向量数据库在大数据中的应用
- 16. Text-to-SQL 模型的优化
- 17. ORM 框架的使用挑战
- 18. FastAPI 的高并发处理能力
- 19. 生成式 AI 在应用中的落地
- 20. 如何高效编写 Prompt
- 21. 大语言模型与传统规则引擎的结合
- 22. 团队合作中的挑战和解决方式
- 23. 面对不确定需求时的应对方式
- 24. 如何应对项目中的技术瓶颈
- 25. 代码质量的保证方式
- 26. 学习新技术的方式与经验
- 27. 高效的工作流程与工具使用
- 28. 开源项目的贡献经历
- 29. 人工智能在特定领域的应用
- 30. 项目的架构设计经验
- 博客总结:
-
1. Python 经验相关问题
- 问题1: 请介绍你在 Python 开发中的经验?
- 回答: 作为一名有一年及以上 Python 开发经验的工程师,我参与了多个项目,包括数据处理、API 开发等。我熟练掌握了 Python 的面向对象编程,擅长使用库如
pandas
、numpy
和requests
来构建高效的解决方案。此外,我还了解如何优化代码性能,提升可维护性。
2. 开源框架 LangChain、Diffy 使用经验
- 问题2: 你是否使用过 LangChain 或 Diffy 框架?请介绍你使用这些框架的经历?
- 回答: 我有使用 LangChain 和 Diffy 搭建智能问答系统的经验。通过 LangChain,我能够快速构建链式调用模型来处理复杂的对话流,而 Diffy 则帮助我在本地快速部署相关服务,进行模型的微调和测试,确保系统的响应速度和准确性。
3. 向量数据库的使用
- 问题3: