基于 PyTorch 的 Stacking 模型实现:逻辑回归、SVM、KNN 与 XGBoost 的集成
目录
1. 引言
集成学习是一种通过结合多个模型的预测结果来提高整体性能的技术。Stacking(堆叠)是集成学习的一种高级形式,它通过将多个基模型的输出作为输入,训练一个元模型来进一步优化预测结果。Stacking 的核心思想是利用不同模型的优势,捕捉数据中的复杂模式。
本文将使用 PyTorch 实现一个 Stacking 模型,结合逻辑回归、支持向量机(SVM)、K 近邻(KNN)作为第一层基模型,并使用 XGBoost 作为第二层元模型。我们将在一个公开数据集上进行实验,并绘制模型的网络结构图、损失曲线和准确率曲线。
2. 数据集介绍
我们选择 MNIST 手写数字数据集 作为实验数据集。MNIST 是一个经典的分类数据集,包含 60,000 个训练样本和 10,000 个测试样本。每个样本是一个 28x28 像素的灰度图像,对应一个 0-9 的数字标签。
数据集的特点:
- 输入维度:28x28 = 784 维