基于 PyTorch 的 Stacking 模型实现:逻辑回归、SVM、KNN 与 XGBoost 的集成

基于 PyTorch 的 Stacking 模型实现:逻辑回归、SVM、KNN 与 XGBoost 的集成


1. 引言

集成学习是一种通过结合多个模型的预测结果来提高整体性能的技术。Stacking(堆叠)是集成学习的一种高级形式,它通过将多个基模型的输出作为输入,训练一个元模型来进一步优化预测结果。Stacking 的核心思想是利用不同模型的优势,捕捉数据中的复杂模式。

本文将使用 PyTorch 实现一个 Stacking 模型,结合逻辑回归、支持向量机(SVM)、K 近邻(KNN)作为第一层基模型,并使用 XGBoost 作为第二层元模型。我们将在一个公开数据集上进行实验,并绘制模型的网络结构图、损失曲线和准确率曲线。


2. 数据集介绍

我们选择 MNIST 手写数字数据集 作为实验数据集。MNIST 是一个经典的分类数据集,包含 60,000 个训练样本和 10,000 个测试样本。每个样本是一个 28x28 像素的灰度图像,对应一个 0-9 的数字标签。

数据集的特点:

  • 输入维度:28x28 = 784 维
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值