深入解析损失值的归一化和标准化

深入解析损失值的归一化和标准化

引言

在机器学习和深度学习中,损失值的归一化(Normalization)和标准化(Standardization)是优化模型训练过程的关键技术。本文将从数学原理、实现方法、场景应用等多个维度深入解析这两种技术,并提供完整的Python实现代码。


一、核心概念解析

1.1 归一化与标准化的数学定义

归一化(Min-Max Scaling):
将数据线性映射到[0,1]区间
X norm = X −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值