pandas
没有爱好的程序员
这个作者很懒,什么都没留下…
展开
-
pandas笔记-DataFrame(4)
16、Sparse accessorSparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor.DataFrame.sparse.densityRatio of non-sparse points to total (dense) data points.DataFrame.sparse.from_spmatrix(data[, …])Create a new翻译 2021-10-18 19:02:10 · 499 阅读 · 0 评论 -
pandas笔记-DataFrame(3)
11、Combining / comparing / joining / mergingDataFrame.append() # 将other的行追加到调用者的末尾,返回一个新对象。DataFrame.assign() # 将新列分配给数据帧。DataFrame.compare() # 与另一个数据帧进行比较并显示差异。DataFrame.join() # 连接另一个DataFrame的列。DataFrame.merge() # 使用数据库样式联接合并DataFrame或命名Series对象。D翻译 2021-10-17 21:23:16 · 246 阅读 · 0 评论 -
pandas笔记-DataFrame(2)
6、Function application, GroupBy & windowDataFrame.apply() # 沿DataFrame的轴应用函数。DataFrame.applymap() # 将函数应用于Dataframe元素。DataFrame.pipe() # 应用函数 DataFrame.agg() # 在指定轴上使用一个或多个操作进行聚合。DataFrame.aggregate() # 在指定轴上使用一个或多个操作进行聚合。DataFrame.transform() #翻译 2021-10-12 19:18:25 · 478 阅读 · 0 评论 -
pandas笔记-Series(4)
14、PlottingSeries.plot() # Series绘图存取器及方法Series.plot.area() # 绘制堆叠面积图。Series.plot.bar() # 垂直条形图。Series.plot.barh() # 做一个水平条形图。Series.plot.box() # 制作DataFrame列的方框图。Series.plot.density() # 使用高斯核生成核密度估计图。Series.plot.hist() # 绘DataFrame帧列的一个直方图。Series.翻译 2021-09-26 23:14:03 · 188 阅读 · 0 评论 -
pandas笔记- Series(3)
Combining / comparing / joining / merging¶Series.append(to_append[, ignore_index, …])Concatenate two or more Series.Series.compare(other[, align_axis, …])Compare to another Series and show the differences.Series.update(other)Modify Series in pla翻译 2021-09-26 17:31:47 · 576 阅读 · 0 评论 -
pandas笔记-Input/output
1、文件类型可以读写的文件可是有:Pickling/Flat file/Clipboard/Excel/JSON/HTML/XML/Latex/HDFStore: PyTables (HDF5)/Feather/Parquet/ORC/SAS/SPSS/SQL/Google BigQuery/STATA自己可能用到的Pickling/Flat file/Excel/JSON/HTML/XML/SPSS/SQL2、常用举例2.1 Picklingread_pickle() # 从文件中加载p翻译 2021-09-23 17:07:33 · 285 阅读 · 0 评论 -
pandas笔记-DataFrame(1)
1、构建DataFrame() # 二维、大小可变、潜在异构的表格数据。具体事例2、属性和基础数据DataFrame.index # DataFrame的行索引DataFrame.columns # DataFrame的列索引DataFrame.dtypes # DataFrame每一列的数据类型DataFrame.info() # DataFrame的信息描述DataFrame.select_dtypes() # 基于列的数据类型,选择/排除DataFrame的数据集DataFrame翻译 2021-09-23 16:21:55 · 360 阅读 · 0 评论 -
pandas笔记-构建DataFrame
import pandas as pddic = { "序号" : pd.Series(range(1, 5), dtype = "int32"), "姓名" : ['张三','李四','王五','赵六'], "日期" : pd.Timestamp("20210921"), "科目" : ["Python", "Java", "C++", "C"], "性别" : np.array(['男','女'] * 2, dtype="str"), "班级" : "原创 2021-09-12 15:32:57 · 298 阅读 · 0 评论 -
pandas笔记-groupby
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)by–以哪一个字段聚合,axis–横向 or 纵向,as_index–是否作为索引sort–是否排序事例:import pandas as pdimport numpy as npdict_obj = {'key1' : ['a', 'b', 'a', 'b',原创 2021-09-12 19:07:53 · 93 阅读 · 0 评论 -
pandas笔记-数据拼接
1、concatpandas.concat(objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)事例s1 = pd.Series(['a', 'b'])s2 = pd.Series(['c', 'd'])pd.concat([s1, s2])输出0 a1 b0 c原创 2021-09-14 07:32:46 · 90 阅读 · 0 评论 -
pandas笔记-General functions 常用函数
1、数据操作melt() # DataFrame从宽到长格式的转变,选择性地保留标识符设置。pivot() # 返回按给定 索引/列值 组织的新DataFrame。pivot_table() # 创建电子表格样式的数据透视表作为DataFrame。crosstab() # 计算两个(或更多)因素的简单交叉表。cut() # 把一组数据转换为离散的间隔。qcut() # 基于分位数的离散化函数。merge() # 使用数据库样式联接合并DataFrame或Series。merge_ordere翻译 2021-09-14 20:17:27 · 181 阅读 · 0 评论 -
pandas笔记-Series(1)
1、构建Series() # 有轴标签的一维数据阵列(包括时间序列)。2、属性Series.index # 系列的索引(轴标签)。Series.array # 支持此系列或索引的数据的扩展数组。Series.values # 根据数据类型将序列返回为ndarray或类似ndarray。Series.dtype # 返回基础数据的dtype对象。Series.shape # 返回基础数据形状的元组。Series.nbytes # 返回基础数据中的字节数。Series.ndim # 根据定义翻译 2021-09-17 16:15:58 · 247 阅读 · 0 评论 -
pandas笔记-Series(2)
1、函数应用,聚合&windowSeries.apply() # 对系列的值调用函数。Series.agg() # 在指定轴上使用一个或多个操作进行聚合。Series.aggregate() # 在指定轴上使用一个或多个操作进行聚合。Series.transform() # 在使用转换值自行生成序列时调用func。Series.map() # 根据输入对应关系映射序列值。Series.groupby() # 使用映射器或一系列列对系列进行分组。Series.rolling() # 提供翻译 2021-09-18 22:22:19 · 510 阅读 · 0 评论