11. 盛最多水的容器

给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

暴力比较法

class Solution {
    public int maxArea(int[] height) {
        int max = 0;
        for(int i=0;i<height.length-1;i++){
            for(int j=i+1;j<height.length;j++){
                if(max<(j-i)*whoIsMin(height[i],height[j]))
                    max = (j-i)*whoIsMin(height[i],height[j]);
            }
        }
        return max;
    }
    
    int whoIsMin(int num1,int num2){
        if(num1>num2) return num2;
        else return num1;
    }
}

双指针法

我也不知道怎么证明这种方法不会错过最大面积.


public class Solution {
    public int maxArea(int[] height) {
        int max = 0, l = 0, r = height.length - 1;
        while(l<r){
            max = Math.max(max,Math.min(height[l],height[r])*(r-l));
            if(height[l]>height[r]) r--;
            else l++;
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值