给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
暴力比较法
class Solution {
public int maxArea(int[] height) {
int max = 0;
for(int i=0;i<height.length-1;i++){
for(int j=i+1;j<height.length;j++){
if(max<(j-i)*whoIsMin(height[i],height[j]))
max = (j-i)*whoIsMin(height[i],height[j]);
}
}
return max;
}
int whoIsMin(int num1,int num2){
if(num1>num2) return num2;
else return num1;
}
}
双指针法
我也不知道怎么证明这种方法不会错过最大面积.
public class Solution {
public int maxArea(int[] height) {
int max = 0, l = 0, r = height.length - 1;
while(l<r){
max = Math.max(max,Math.min(height[l],height[r])*(r-l));
if(height[l]>height[r]) r--;
else l++;
}
return max;
}
}