LeetCode11-盛最多水的容器
11. 盛最多水的容器:
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
- n == height.length
- 2 <= n <= 10^5
- 0 <= height[i] <= 10^4
解题思路:
n为10^5,明显会超时
本题采用双指针,经典面试题,不容易想到。
设两指针 i , j ,指向的水槽板高度分别为 h[i] , h[j] ,分别从两侧往中间移动,此状态下水槽面积为 S。
由于可容纳水的高度由两板中的短板决定,因此可得如下面积公式 :
S=min(h[i],h[j])×(j−i)
在这个状态下,假设移动长板,则水槽的短板不会超过当前的短板,而j-i是一定减小的,因此这样移动最终面积一定减小,无法得到最优解。
而移动短板,就能够使得短板的长度增加,面积得到增加。
这样移动能够保证面积不会小于移动之前的面积,从而得到最优解。
代码如下:
class Solution {
public:
int maxArea(vector<int>& height) {
int len=height.size();
int l=0,r=len-1;
int ans=0;
while(l<r)
{
ans=max(ans,(r-l)*min(height[l],height[r]));
if(height[l]<height[r])
l++;
else
r--;
}
return ans;
}
};