51nod(2026 Gcd and Lcm 巧妙的积性函数+杜教筛)

题目
在这里插入图片描述在这里插入图片描述
f(x)是一个积性函数。
在这里插入图片描述

#include<cstdio>
#include<tr1/unordered_map>
using namespace std;
using namespace std::tr1;
typedef long long ll;
const int N=1e6+5,mod=1e9+7,Max=2147483647,inv2=500000004;
int is[N+5],prime[N+5];
int mud[N+5];
void init(){
    mud[1]=1;int tot=0;
    for(int i=2;i<=N;++i){
        if(!is[i]) prime[++tot]=i,mud[i]=-i;
        for(int j=1;j<=tot&&(ll)i*prime[j]<=N;++j){
            int t=i*prime[j];is[t]=1;
            if(i%prime[j]==0){mud[t]=0;break;}
            mud[t]=(ll)mud[i]*(-prime[j])%mod;
        }
    }
    for(int i=2;i<=N;++i) mud[i]+=mud[i-1],mud[i]%=mod;
}
unordered_map<int,int>ans_mud;
inline int cal(int l,int r){
    return (ll)(l+r)*(r-l+1)%mod*inv2%mod;
}
inline int f_mud(int n){
    if(n<=N) return mud[n];
    if(ans_mud[n]) return ans_mud[n];
    ll res=1ll;
    for(int l=2,r;l<=n&&r<Max;l=r+1)
        r=n/(n/l),res-=(ll)cal(l,r)*f_mud(n/l)%mod,res%=mod;
    return ans_mud[n]=(res+mod)%mod;
}
inline int solve(int n){
    ll ans=0;
    for(int l=1,r;l<=n&&r<Max;l=r+1)
        r=n/(n/l),ans+=(ll)(f_mud(r)-f_mud(l-1))%mod*(n/l)%mod,ans%=mod;//cout<<l<<"  "<<r<<endl;
    return ans*ans%mod;
}
int main(){
    init();int n;scanf("%d",&n);
    printf("%d\n",solve(n));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值