设前缀长度为len,若len%(len-该前缀子串的最长公共前后缀)==0.则证明该前缀是周期串,最大的周期为 len/(len-该前缀子串的最长公共前后缀)。 kmp中 nex数组可用来解决这个问题。
证明的话 首先证明 若可以整除,则一定为周期串。
再证明 若不可以整除要想为周期串的话,那么最长公共前后缀一定比nex[len]大,反之证明不整除一定不为周期串。
最大周期是 len/(len-该前缀子串的最长公共前后缀) 这个的证明也是 如果循环串更小(周期更多) 那么最长公共前后缀也应该比nex[len]大。
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
char s[N];int nex[N],m,cas;
void get_nex(){
printf("Test case #%d\n",cas);
int i=0,k=-1;nex[0]=-1;
while(i<m){
if(k==-1||s[i]==s[k]){
nex[++i]=++k;
if(i>=2&&nex[i]&&i%(i-nex[i])==0) printf("%d %d\n",i,i/(i-nex[i]));
}
else k=nex[k];
}
puts("");
}
int main(){
while(~scanf("%d",&m),m) scanf("%s",s),++cas,get_nex();
}