线性代数梳理

1 从线性变换的角度看待矩阵

微积分:y=f(x)

线性代数:Ax=b

2.从列向量的角度看待矩阵

\begin{bmatrix}a & b\\ c & d\end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix}=x\begin{bmatrix} a\\ c \end{bmatrix}+y\begin{bmatrix} b\\ d \end{bmatrix}

3 向量及其运算

3.1 基本运算

  • 转置
  • 线性:加减、数乘
  • 内积:单位化、正交化

3.2 线性相关

  • 线性组合
  • 线性相关
  • 线性无关

3.3 向量空间

  • 空间基:坐标系
  • 正交基:垂直坐标系
  • 标准正交基:标准坐标系

4 矩阵及其运算

4.1 基本运算

  • 转置
  • 线性
  • 乘法:两个特殊(初等矩阵、对角矩阵)

4.2 逆矩阵

  • 定义
  • 计算
  • 满秩
  • 正交矩阵:Q^{-1}=Q^{T}

4.3 线性变换矩阵

  • 正交矩阵:旋转变换
  • 对角矩阵:放缩变换

5 行列式

  • 几何意义:线性变换的伸缩因子
  • 重要性质
  • 计算方法:高阶借助初等行变换利用展开公式降阶,低阶行列式利用公式

6 线性方程组

6.1 齐次方程组Ax=0

  • step1:初等行变换化为阶梯式
  • step2:确定基础解系个数=未知数个数-系数矩阵的秩

6.2 非齐次方程组Ax=b

  • 齐次通解+非其次特解

7 特征值与特征向量

7.1 定义:Ax=\lambda x

7.2 求解

  • 转换:(A-\lambda E)x=0
  • 求特征值:|A-\lambda E|=0
  • 求特征向量

7.3 性质

(1)特征值的性质

(2)特征向量的性质

  • 同一个特征值的特征向量的线性组合也是关于这个特征值的特征向量
  • 矩阵属于不同特征值的特征向量线性无关
  • 实对称矩阵属于不同特征值的特征向量相互正交

7.4 相似变换P^{-1}AP=\Lambda

为什么要相似:先按无规则的一般矩阵转换成有规则、可解释的对角矩阵,即A=P\Lambda P^{-1}

如何理解相似:不同的坐标系下,具有相同变换效果的矩阵,即线性变换效果相似

相似要具备的条件:矩阵有n个线性无关的特征向量

证明如下:已知A=P\Lambda P^{-1},故AP=P\Lambda

 以3阶为例,设

\Lambda =\begin{bmatrix} a & 0 &0 \\ 0 & b &0 \\ 0& 0& c \end{bmatrix}

将P按列分块,即P=[p1,p2,p3]

代入得

AP=A[p1,p2,p3]=[Ap1,Ap2,Ap3]=[p1,p2,p3]\begin{bmatrix} a & 0&0 \\ 0 &b & 0\\ 0 &0 & c \end{bmatrix}=[ap1,bp2,cp3]

Ap1=ap1,Ap2=bp2,Ap3=cp3

7.5 正交变换Q^{T}AQ=\Lambda

  • 实对称矩阵一定可以对角化
  • 实对称矩阵不同特征值的特征向量正交
  • 同一个特征值的无关特征向量怎么办:施密特正交化(理论来源:同一个特征值的特征向量的线性组合仍然是属于该特征值的特征向量)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值