定积分存在定理与原函数存在定理

本文探讨了函数连续性与积分、导数的关系,解析了不同类型的间断点对原函数存在的影响,以及函数在指定区间上的可积、可导条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果f(x)连续,则一定存在原函数;

如果f(x)不连续,有第一类可去、跳跃间断点或第二类无穷间断点的,那么包含此间断点的区间内,一定不存在原函数;

如果f(x)不连续,有第二类振荡间断点,那么包含此间断点的区间内,原函数可能存在,也可能不存在。

设F(x)=\int_{a}^{x}f(t)dt,x属于[a,b]

  1. f(x)在[a,b]上可积,则F(x)在[a,b]上连续
  2. f(x)在[a,b]上连续,则F(x)在[a,b]上可导
  3. f(x)在[a,b]上可导,则F(x)在[a,b]上有二阶导
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值