曲线积分与路径无关

在多元函数的积分中,从起点到终点可以有无数条积分路径。有的时候,无论选择哪一条路径,积分结果不变,只和起点和终点有关,那么这就是积分与路径无关

以P(x,y),Q(x,y)为例,在单连通区域D内,出现以下几种情况的任意一种即为积分与路线无关,且这些情况两两等价

1.在定义域D内,沿封闭曲线积分一圈得到的结果永远为0

2.积分只与选取的起点和终点有关,与路线无关,即定义

α和β是两条不同的曲线

当然,题目中不会这么直接的给出式子,而是通过下面这种式子暗示

即起点为固定点,终点和t有关,积分结果是一个和t有关的式子,这个式子对于任意t恒成立

3.Pdx+Qdy是u(x,y)的全微分,即

4.在D内任意一点都满足:

除此之外,对于非单连通的区域,只靠第四点没法证明积分与路径无关,必须要通过证明一二或三来确认

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值