在多元函数的积分中,从起点到终点可以有无数条积分路径。有的时候,无论选择哪一条路径,积分结果不变,只和起点和终点有关,那么这就是积分与路径无关
以P(x,y),Q(x,y)为例,在单连通区域D内,出现以下几种情况的任意一种即为积分与路线无关,且这些情况两两等价
1.在定义域D内,沿封闭曲线积分一圈得到的结果永远为0
2.积分只与选取的起点和终点有关,与路线无关,即定义
α和β是两条不同的曲线
当然,题目中不会这么直接的给出式子,而是通过下面这种式子暗示
即起点为固定点,终点和t有关,积分结果是一个和t有关的式子,这个式子对于任意t恒成立
3.Pdx+Qdy是u(x,y)的全微分,即
4.在D内任意一点都满足:
除此之外,对于非单连通的区域,只靠第四点没法证明积分与路径无关,必须要通过证明一二或三来确认