粗读Paint Transformer: Feed Forward Neural Painting with Stroke Prediction

本文介绍了一种名为PaintTransformer的快速油画渲染算法,该算法通过预测笔画实现从原图像到油画效果的转换。与以往依赖优化方法不同,PaintTransformer将问题转化为前馈预测,大大减少了训练时间。算法首先生成背景笔画,然后预测并添加前景笔画,以使预测图像接近目标图像。关键参数包括颜色、倾斜角度、宽度、高度和坐标,这些决定了笔画的特征。最终,通过优化预测笔画与实际笔画的匹配度,以及预测图像与真实图像的相似度,提升预测器的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        作者本人在知乎写了更详细的文章,本博客只是提炼要点并作为个人笔记,想了解更详细的内容还是要看论文和作者的博客:[ICCV 2021 Oral] Paint Transformer - 基于笔触预测的快速油画渲染算法

        本文思路是模拟笔画,从粗的笔画不断变细,达到绘制一副油画的效果。这种方法既可以保证生成图像与原图像相似,但同时保留油画的特点和质感。之前,网易实验室已经用优化的方法实现了这一设想,但因为设计优化,所以训练时比较耗时。

        作者思路是将优化问题变为前馈预测问题,可以大幅节约时间。

        从左下角的空白画布(Blank Canvas)开始,先随机生成几笔背景笔画(Background Strokes),得到一副背景图像Ic,再添加几笔前景笔画(Foreground Strokes),得到目标图像It,而笔画预测器需要根据Ic和It预测出前景笔画是哪些,并通过预测出来的笔画和Ic组合,得到预测图象。

        通过缩小预测笔画与实际笔画的区别,和预测图象与实际图像的区别,可以提高预测器的预测能力。最后使用时,直接将真实图像作为目标图像,输入到预测器,并渲染出预测图象即可。

        而笔画的参数主要有:R,G,B,决定颜色,θ,决定倾斜角度,w决定宽,h决定高,x,y决定中心坐标。通过这六个属性和一个初始笔刷,就可以准确地生成一幅图像。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值