粗读Learning multi-level structural information for small organ segmentation

分割损失函数主要有区域,边界和像素三种,本文将三种损失结合,指导模型训练。region关注正确分割与错误分割面积之比,例如IoU损失和Dice损失,boundary关注边界距离,如HD损失,而pixel-wise关注每个像素分类正确与否,如交叉熵损失。

本文通过三个模块提取不同的信息,不同方向的信息依次与不同的GT做比较,最后综合三种信息得到最终分类结果。为了方便展示,在显示损失函数这一块只展示了一个ASPP模块。本文提出的计算三个损失的方法名为MLL。

整个网络的实际架构如上图所示,ASPP在介绍损失函数时展示了,而Pixel模块是个attention模块,point-wise MLP通过1*1卷积实现,而shared MLP我搜了一堆资料依然云里雾里,感觉就是一个全连接层。

在经过每个模块后都会得到一个features,各个模块就会通过这个feature计算损失。而最终将三个特征融合的部分,作者命名为multi-level saliency guidance module,这又是一个参数,最终的分割结果与GT还会计算一个交叉熵损失。最终,将4个损失加在一起,更新参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值