分割损失函数主要有区域,边界和像素三种,本文将三种损失结合,指导模型训练。region关注正确分割与错误分割面积之比,例如IoU损失和Dice损失,boundary关注边界距离,如HD损失,而pixel-wise关注每个像素分类正确与否,如交叉熵损失。
本文通过三个模块提取不同的信息,不同方向的信息依次与不同的GT做比较,最后综合三种信息得到最终分类结果。为了方便展示,在显示损失函数这一块只展示了一个ASPP模块。本文提出的计算三个损失的方法名为MLL。
整个网络的实际架构如上图所示,ASPP在介绍损失函数时展示了,而Pixel模块是个attention模块,point-wise MLP通过1*1卷积实现,而shared MLP我搜了一堆资料依然云里雾里,感觉就是一个全连接层。
在经过每个模块后都会得到一个features,各个模块就会通过这个feature计算损失。而最终将三个特征融合的部分,作者命名为multi-level saliency guidance module,这又是一个参数,最终的分割结果与GT还会计算一个交叉熵损失。最终,将4个损失加在一起,更新参数。