
•机器学习中的数学
本专栏主要讲述了机器学习中的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本专栏对众多的数学知识中涉及到机器学习的部分进行提炼和总结,并做了基础的讲解。
爱吃骨头的猫、
嘘!
展开
-
机器学习中的数学(一)--基础数学与基本微分学
写在前面 《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。 第一部分主要讲述了机器学习过程中应用比较多的基础数学知识与基本微分学知识,主要包括求和求积函数,对数函数的基本运算,一元函数与多元函数的微...原创 2019-03-22 20:22:41 · 3678 阅读 · 0 评论 -
机器学习中的数学(二)--梯度下降法
写在前面《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。第二部分主要讲述了梯度下降法,这是在机器学习中很重要很常见的方法。梯度下降法(gradient descent)又称最速下降法(steep...原创 2019-03-23 22:40:21 · 3850 阅读 · 0 评论 -
机器学习中的数学(三)--牛顿法
写在前面《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。 牛顿法与梯度下降法相似,也是求解无约束最优化问题的常用方法,也有收敛速度快的优点。牛顿法是迭代算法,每一步需要求解木变函数的海塞矩阵(He...原创 2019-03-25 09:44:03 · 3908 阅读 · 0 评论 -
机器学习中的数学(四)--线性代数
写在前面《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。第四部分主要讲述了机器学习过程中应用比较多的线性代数知识,主要包括向量及其运算,矩阵及其运算,特征值与特征向量,常用的矩阵和向量求导以及主成分分析...原创 2019-03-28 22:17:53 · 3912 阅读 · 0 评论 -
机器学习中的数学(五)--概率统计
写在前面《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。1. 随机变量 随机变量可以地取不同值的。我们通常用小写字母来表示随机变量本身,而用带数字下标的小写母来表能够取到的值。例如, x1和x...原创 2019-04-08 16:12:40 · 4680 阅读 · 0 评论 -
机器学习中的数学(六)--信息论与激活函数
写在前面《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。1. 信息论1.1 信息熵定义:用来衡量信息量的大小,信息的不确定性越大,信息熵就越大,信息的不确定性越小,信息熵就越小表达式:...原创 2019-04-10 19:37:30 · 3839 阅读 · 0 评论 -
机器学习中的数学(七)--凸优化的基础知识
写在前面《机器学习中的数学》系列主要列举了在机器学习中用到的较多的数学知识,包括微积分,线性代数,概率统计,信息论以及凸优化等等。本系列重在描述基本概念,并不在应用的方面的做深入的探讨,如果想更深的了解某一方面的知识,请自行查找研究。1.几何体的向量表示已知二维平面上两定点A(5,1),B(2,3),给出线段AB的方程表示如下:如果将点A看成向量A,点B看成向量b,...原创 2019-04-15 18:02:08 · 4809 阅读 · 0 评论