•TensorFlow2.0
本专栏基于TensorFlow2.0框架,介绍了环境的搭建与安装,API的使用,dataset的使用,CNN, RNN等模型的搭建与训练等。
爱吃骨头的猫、
嘘!
展开
-
TensorFlow2.0(十二)--实现简单RNN与LSTM网络
实现简单RNN与LSTM网络前言1. 导入相应的库2. 加载与构建数据集2.1 加载数据集2.2 构建词表2.3 处理数据3. 构建简单的RNN模型3.1 单向RNN模型3.2 双向RNN模型4. 构建LSTM模型4.1 单向LSTM模型4.1 双向LSTM模型5. 模型编译与训练前言上篇博文TensorFlow2.0(十一)–理解LSTM网络我们详细解释了LSTM的工作原理与结构,这篇博文我...原创 2020-04-16 21:13:40 · 6293 阅读 · 1 评论 -
TensorFlow2.0(十一)--理解LSTM网络
理解LSTM网络前言1. 循环神经网络前言本文内容摘自著名的博客文章Understanding LSTM Networks, 思维导图链接:读书笔记–《Understanding LSTM Networks》1. 循环神经网络我们从来不会从头思考,比如当你看到这句话时,你理解每个字的含义,因为你记住了之前的字和句子,这是因为我们的大脑有记忆的能力。传统的神经网络并不能做到向我们这样理解文章...原创 2020-04-13 16:42:43 · 4923 阅读 · 0 评论 -
TensorFlow2.0(十)--实现深度可分离卷积神经网络
深度可分离卷积神经网络1. 深度可分离卷积网络介绍1. 1 深度可分离卷积网络与普通卷积网络1.2 普通卷积与深度可分离卷积计算量对比2. 深度可分离卷积网络实现2.1 导入相应的库2.2 数据集的加载与处理2.3 构建模型2.4 2.4 模型的编译与训练2.5 学习曲线绘制2.6 模型验证1. 深度可分离卷积网络介绍1. 1 深度可分离卷积网络与普通卷积网络深度可分离卷积神经网络是卷积神...原创 2020-04-10 18:14:23 · 6618 阅读 · 4 评论 -
TensorFlow2.0(九)--Keras实现基础卷积神经网络
Keras实现基础卷积神经网络1. 卷积神经网络基础2. Keras实现卷积神经网络2.1 导入相应的库2.2 数据集的加载与处理2.3 构建模型2.4 模型的编译与训练2.5 学习曲线绘制2.6 模型验证1. 卷积神经网络基础卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网...原创 2020-04-10 16:55:57 · 4446 阅读 · 5 评论 -
TensorFlow2.0(八)--tf.function函数转换
tf.function函数转换1. 关于tf.function2. tf.function 的实现3. 关于@tf.function1. 关于tf.functiontf.function的官方含义是“Creates a callable TensorFlow graph from a Python function.”也就是说,tf.function可以从 Python 函数创建可调用的 Te...原创 2020-04-05 23:47:24 · 4282 阅读 · 0 评论 -
TensorFlow2.0(七)--基础API使用
基础API使用1. 常量tf.constant1.1 导入相应的库1.2 tf.constant的索引操作1.3 tf.constant的算子操作1.4 numpy与tf.constant之间的转化2. 字符串tf.strings3. ragged tensor3.1 ragged tensor的索引操作3.2 ragged tensor的算子操作3.3 ragged tensor 转化为普通的t...原创 2020-04-05 23:31:59 · 3400 阅读 · 0 评论 -
TensorFlow2.0(六)--超参数搜索
超参数搜索1. 超参数搜索简介1.1 超参数1.2 超参数搜索2. 手动实现超参数搜索2.1 导入相应的库3. sklearn实现超参数搜索1. 超参数搜索简介1.1 超参数超参数就是在神经网络的训练过程中,不变的参数。比如:网络结构参数:层数,每层宽度,每层激活函数等训练参数: batch_size, 学习率, 学习率衰减算法1.2 超参数搜索如果我们在训练模型的过程中手动的一...原创 2020-04-04 17:22:24 · 4119 阅读 · 1 评论 -
TensorFlow2.0(五)--Keras构建Wide & Deep模型
Keras构建Wide & Deep模型1. Wide & Deep模型简介2. Keras实现Wide & Deep模型2.1 导入相应的库2.2 数据集加载与处理2.3 利用函数式API构建Wide & Deep模型2.3 利用子类API构建Wide & Deep模型2.4 模型的训练与验证2.5 多输入结构1. Wide & Deep模型简介...原创 2020-04-04 00:05:06 · 4856 阅读 · 2 评论 -
TensorFlow2.0(四)--Keras构建深度神经网络(DNN)
Keras构建深度神经网络(DNN)1. 深度神经网络简介2. Kerase搭建DNN模型2.1 导入相应的库2.2 数据加载与归一化2.3 网络模型的构建2.4 批归一化,dropout以及selu激活函数2.5 模型编译与训练2.6 模型验证1. 深度神经网络简介深度神经网络(Deep Neural Networks,DNN)可以理解为有很多隐藏层的神经网络,又被称为深度前馈网络(DFN)...原创 2020-04-03 21:51:07 · 7790 阅读 · 0 评论 -
TensorFlow2.0(三)--Keras构建神经网络回归模型
Keras构建神经网络回归模型1. 前言1. 导入相应的库2. 数据导入与处理2.1 加载数据集2.2 划分数据集2.3 数据归一化3. 模型构建与训练3.1 神经网络回归模型的构建3.2 神经网络回归模型的训练3.3 绘制学习曲线4. 模型验证1. 前言上一篇博客的主要内容是利用tf.keras构建了一个由四层神经网络构成的分类模型,并进行了训练,本篇博客的内容是同样利用keras来构建一个...原创 2020-04-03 21:17:38 · 8373 阅读 · 4 评论 -
TensorFlow2.0(二)--Keras构建神经网络分类模型
Keras构建分类模型1. tf.keras简介2. 利用tf.keras构建神经网络分类模型2.1 导入相应的库2.2 数据读取与展示2.3 数据归一化2.4 构建模型2.5 模型的编译与训练2.6 绘制训练曲线2.7 增加回调函数1. tf.keras简介keras是什么:基于python的高级神经网络API以TensorFlow, CNTK或者Theano后端运行,keras必须有...原创 2020-04-03 17:38:07 · 6898 阅读 · 6 评论 -
TensorFlow2.0(一)--简介与环境搭建
简介与环境搭建1. TensorFlow是什么2. TensorFlow1.0与2.0架构3. TensorFlow环境配置1. TensorFlow是什么TensorFlow是Google的开源软件库,有以下特点:采取数据流图,用于数值计算支持多种平台–FPU, CPU, 移动设备最初用于深度学习,变得越来越通用TensorFlow的特性:高度的灵活性,体现在数据流图上真正...原创 2020-03-29 18:17:04 · 3321 阅读 · 0 评论